Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interfering RNA silences genes in ’slippery’ immune cells

09.05.2006
Novel lab technique expands researchers’ toolbox

A technical advance in laboratory techniques may provide biology researchers broader access to RNA interference, a process of blocking the activity of targeted genes. RNA interference has recently emerged as an important tool in studying how genes function in normal biological processes and in disease.

Writing in the Journal of Immunological Methods, published online on March 24, a research team from The Children’s Hospital of Philadelphia combined laboratory technologies in using RNA interference to manipulate human T cells. T cells are immune cells that circulate in the blood, with important roles in autoimmune diseases, infectious diseases and some cancers.

"T cells have previously been difficult to modify with interfering RNA, being more mobile than other cell types that typically remain stationary in cell cultures," said study leader Terri H. Finkel, M.D., Ph.D., chief of Rheumatology at The Children’s Hospital of Philadelphia. "Our approach achieves results comparable to the conventional technique, which uses synthetic small interfering RNA but is very expensive and in short supply. We expect our technique to expand the toolbox for scientists doing research in immunology."

RNA interference (RNAi), which naturally occurs in cells, is a process in which brief RNA sequences, called small interfering RNA (siRNA) block signals from a particular gene. This process, called gene silencing, inhibits the gene from carrying out its function of creating a protein or another gene product. The body often uses RNAi as a defense against the action of hostile viruses.

Over the past few years, biomedical researchers have been investigating how they might eventually harness RNAi in new medicines. Another line of research uses RNAi as a research tool, investigating the functions of specific genes by studying what happens when RNAi temporarily silences them--a process calling "knocking down" the gene.

The research by Dr. Finkel’s team aims to extend RNAi to a wider pool of researchers by making the technique less expensive and more widely available, as well as adapting it to T cells, a cell type previously intractable to such manipulation. Their technique combines three technologies already accessible to lab investigators: nucleofection, siRNA expression cassettes, and siRNA expression vectors. Nucleofection technology uses specialized solutions and electrical pulses to temporarily open a cell nucleus. Into the nucleus, researchers insert a payload of DNA.

The DNA holds a sequence of genetic code that produces a specific siRNA after it enters a nucleus. The researchers encased the DNA within an siRNA expression cassette (SEC), an inexpensive, quickly synthesized product that carries genetic sequences to regulate the gene activity that yields an siRNA. After the researchers tested a variety of SECs to determine which is the most effective, they inserted the desired SEC into a vector, a biological agent that inserts itself into a target cell’s nucleus more efficiently than an unaccompanied cassette.

The researchers first tested their approach by introducing a gene for green fluorescent protein into human T cells, and using siRNA to inhibit that gene’s expression, and dim its fluorescent glow.

They then applied their approach to HALP, a gene naturally active in T cells. Dr. Finkel previously discovered and named HALP, an acronym for "HIV-associated life preserver," showing that it had a role in prolonging HIV infection by helping HIV-infected T cells survive attack by the immune system.

Using siRNA and their laboratory techniques, the investigators succeeded in "knocking down," that is, decreasing gene expression by HALP. Because their previous research strongly suggests that HALP promotes latent HIV infection, the new technique has a potential application to HIV treatment. "The siRNA may represent a suicide vector: by knocking down HALP it may allow HIV-infected cells to self-destruct, thus eliminating a hiding place for the virus," said Dr. Finkel.

"More broadly," she added, "the technique could theoretically be directed against other immune-related diseases, by silencing harmful genes active in T cells."

Dr. Finkel’s co-authors, all from The Children’s Hospital of Philadelphia, were Jiyi Yin, Ph.D., Zhengyu Ma, Nithianandan Selliah, Ph.D., Debra K. Shivers and Randy Q. Cron, M.D., Ph.D. National Institutes of Health grants supported the research, along with support from the University of Pennsylvania Center for AIDS Research and the University’s Cancer Center, the Bender Foundation, the Joseph Lee Hollander Chair at The Children’s Hospital of Philadelphia, and the W. W. Smith Charitable Trust.

"Effective Gene Suppression Using Small Interfering RNA in Hard-to-Transfect Human T Cells." Journal of Immunological Methods. In press, published online March 24, 2006.

John Ascenzi | EurekAlert!
Further information:
http://www.chop.edu

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>