Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interfering RNA silences genes in ’slippery’ immune cells

09.05.2006
Novel lab technique expands researchers’ toolbox

A technical advance in laboratory techniques may provide biology researchers broader access to RNA interference, a process of blocking the activity of targeted genes. RNA interference has recently emerged as an important tool in studying how genes function in normal biological processes and in disease.

Writing in the Journal of Immunological Methods, published online on March 24, a research team from The Children’s Hospital of Philadelphia combined laboratory technologies in using RNA interference to manipulate human T cells. T cells are immune cells that circulate in the blood, with important roles in autoimmune diseases, infectious diseases and some cancers.

"T cells have previously been difficult to modify with interfering RNA, being more mobile than other cell types that typically remain stationary in cell cultures," said study leader Terri H. Finkel, M.D., Ph.D., chief of Rheumatology at The Children’s Hospital of Philadelphia. "Our approach achieves results comparable to the conventional technique, which uses synthetic small interfering RNA but is very expensive and in short supply. We expect our technique to expand the toolbox for scientists doing research in immunology."

RNA interference (RNAi), which naturally occurs in cells, is a process in which brief RNA sequences, called small interfering RNA (siRNA) block signals from a particular gene. This process, called gene silencing, inhibits the gene from carrying out its function of creating a protein or another gene product. The body often uses RNAi as a defense against the action of hostile viruses.

Over the past few years, biomedical researchers have been investigating how they might eventually harness RNAi in new medicines. Another line of research uses RNAi as a research tool, investigating the functions of specific genes by studying what happens when RNAi temporarily silences them--a process calling "knocking down" the gene.

The research by Dr. Finkel’s team aims to extend RNAi to a wider pool of researchers by making the technique less expensive and more widely available, as well as adapting it to T cells, a cell type previously intractable to such manipulation. Their technique combines three technologies already accessible to lab investigators: nucleofection, siRNA expression cassettes, and siRNA expression vectors. Nucleofection technology uses specialized solutions and electrical pulses to temporarily open a cell nucleus. Into the nucleus, researchers insert a payload of DNA.

The DNA holds a sequence of genetic code that produces a specific siRNA after it enters a nucleus. The researchers encased the DNA within an siRNA expression cassette (SEC), an inexpensive, quickly synthesized product that carries genetic sequences to regulate the gene activity that yields an siRNA. After the researchers tested a variety of SECs to determine which is the most effective, they inserted the desired SEC into a vector, a biological agent that inserts itself into a target cell’s nucleus more efficiently than an unaccompanied cassette.

The researchers first tested their approach by introducing a gene for green fluorescent protein into human T cells, and using siRNA to inhibit that gene’s expression, and dim its fluorescent glow.

They then applied their approach to HALP, a gene naturally active in T cells. Dr. Finkel previously discovered and named HALP, an acronym for "HIV-associated life preserver," showing that it had a role in prolonging HIV infection by helping HIV-infected T cells survive attack by the immune system.

Using siRNA and their laboratory techniques, the investigators succeeded in "knocking down," that is, decreasing gene expression by HALP. Because their previous research strongly suggests that HALP promotes latent HIV infection, the new technique has a potential application to HIV treatment. "The siRNA may represent a suicide vector: by knocking down HALP it may allow HIV-infected cells to self-destruct, thus eliminating a hiding place for the virus," said Dr. Finkel.

"More broadly," she added, "the technique could theoretically be directed against other immune-related diseases, by silencing harmful genes active in T cells."

Dr. Finkel’s co-authors, all from The Children’s Hospital of Philadelphia, were Jiyi Yin, Ph.D., Zhengyu Ma, Nithianandan Selliah, Ph.D., Debra K. Shivers and Randy Q. Cron, M.D., Ph.D. National Institutes of Health grants supported the research, along with support from the University of Pennsylvania Center for AIDS Research and the University’s Cancer Center, the Bender Foundation, the Joseph Lee Hollander Chair at The Children’s Hospital of Philadelphia, and the W. W. Smith Charitable Trust.

"Effective Gene Suppression Using Small Interfering RNA in Hard-to-Transfect Human T Cells." Journal of Immunological Methods. In press, published online March 24, 2006.

John Ascenzi | EurekAlert!
Further information:
http://www.chop.edu

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>