Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

T cell ’brakes’ lost during human evolution

02.05.2006
A significant difference between human and chimpanzee immune cells may provide clues in the search to understand the diverse array of human immune-related diseases. Researchers at the University of California, San Diego (UCSD) School of Medicine have uncovered a a specific type of molecule expressed on non-human primate T cells, but not human T cells. T cells are important orchestrators of the immune system.

In a study to be published on-line in advance of publication in Proceedings of the National Academy of Sciences the week of May 1-5, UCSD researchers report that – unlike T cells from chimpanzees, bonobos, and gorillas (the "great apes" which are human’s closest evolutionary relatives) – human T cells lack expression of certain "Siglec" molecules. Siglecs are immune-dampening proteins that bind to sialic acids, the complex sugars found on the outside of cells. Siglec molecules seem to regulate T cell activation in chimpanzees by restricting the degree of signaling from the T cell receptor, which normally triggers the response of T cells in the immune system.

"Siglecs are like ’brakes’ that can slow down the activation of an immune cell upon stimulation," said Ajit Varki, M.D., UCSD Professor of Medicine and Cellular and Molecular Medicine and co-director of UCSD Glycobiology Research and Training Center. "During human evolution, we seem to have shut off these brakes on our T cells, allowing them to become hyper-active."

Human T cells respond much more robustly than chimpanzee cells do, a disparity that could be explained by the absence of human T cell Siglecs. The explanation for this human-specific evolutionary loss of Siglecs is currently unknown. The UCSD scientists speculate that this may have been due to a selective pressure by a microbe that once drove human ancestors to require a high level of T cell activation. Another possibility is that this phenotype was secondarily acquired, during the adjustment to the human-specific loss of the sialic acid Neu5Gc some three million years ago, and that the phenotype has been carried by all humans ever since.

The study raises warning flags about the stimulatory and potentially destructive potential of the absence of Siglec molecules in human T cells, compared to chimpanzees and other nonhuman primate counterparts.

This may explain some major differences in susceptibility to certain diseases between humans and great apes. One example is the lack of progression to AIDS in the great majority of chimpanzees infected with HIV virus. It could also account for the rarity of T-cell mediated liver damage, such as chronic active hepatitis, cirrhosis and cancer, following Hepatitis B or C infection in chimpanzees. In addition, several other common human T cell-mediated diseases, including bronchial asthma, rheumatoid arthritis and type 1 diabetes, have, so far, not been reported in chimpanzees or other great apes.

The study suggests that the expression of Siglecs on chimpanzee T cells in essence puts the brakes on the cells during chronic HIV infection, preventing progression to AIDS in chimpanzees. In contrast, the onset of human AIDS occurs more rapidly due to the loss of T cells, which are essentially "unprotected" by the regulatory Siglecs.

This study may also explain the severe human reactions observed in a recent clinical trial using a T cell activating anti-CD28 antibody produced by TeGenero, Inc. All six healthy volunteers who received doses at 500 times lower than what was tested in nonhuman primates became severely ill, requiring hospitalization.

"In retrospect, the absence of natural restrictions on activation, such as that provided by Siglecs, could have predicted this striking disparity between humans and nonhuman primates," said Varki. The human volunteers could have experienced rapid activation of T cells and a resulting "cytokine storm." The research team asked for a sample of the anti-CD28 antibody from TeGenero in order to test it on chimpanzee blood, but the company declined their request.

While this family of molecules displays a striking difference between humans and nonhuman primates, the researchers point out that there may be other undiscovered factors that also contribute to the observed differences in immune function.

As our closest evolutionary cousins, chimpanzees share more than 99% identity in typical protein sequences with humans. For that reason, the common chimpanzee has long been assumed to be an effective animal model for human diseases.

"In fact, chimpanzee diseases may be much more disparate from human diseases than previously envisioned," said Varki.

"The good news is that the loss of this brake system is not permanent, as we still have the Siglec genes in our genomes, and do continue to express them in other blood cell types," said Varki. "It is reasonable to hope that drugs can be found to turn the Siglec brakes back on again in human T cells, to slow the T cells down when they become hyper-active and cause disease."

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>