Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Duck bill and echidna – are they our ancestors or relatives?

25.04.2006
People, as they belong to the mammals, should be particularly interested in the problem of origin of this class in the animal kingdom that has conquered the entire world through evolution: not only the land, but, partly the ocean and the air.

We have already known our ancient ancestors for long – these are medium-sized animals - eutherapsida (which means “real Synapsida”), they appeared at the end of the palaeozoic, approximately 270 million years ago, and continued to develop in the Age of Reptiles – the era of huge dinosaurs’ predominance. Ultimately, dinosaurs became extinct, and eutherapsida, gradually changing, turned into mammals.

However, there are blank spots on this long way, and far from all of its stages are clear once and for all. Thus, investigations by Mikhail Ivakhnenko, Doctor of Biology (Paleontological Institute, Russian Academy of Sciences), make researchers review relations between contemporary mammals and the duck bill and echidna of Australia and the New Guinea long-nosed echidna (Zaglossus). These strangely looking animals belonging to the ovipositor subclass are considered to be primitive mammals (they are also called Prototheria – “primitive animals”).

It is assumed that formerly in the Age of Mammals, they gave rise to contemporary mammals and remained till nowadays. “However, frankly speaking, they are not resembling ordinary mammals that much, says M.F. Ivakhnenko. But, on the other hand, contemporary investigations have revealed suspicious similarity between them and other extinct group of animals – eotherapcida (“ancient Synapsida”). This similarity is particularly connected with specific construction of their auditory apparatus. It looks as if eutherapcida gave origin to only marsupial and placental mammals, and the duck bill, echidna and New Guinea long-nosed echidna (Zaglossus) - are not our ancestors but the top of other branch of evolutionary tree.”

“Ancient Synapsida” had appeared much earlier than “real Synapsida” did, approximately 320 million years ago, and, as paleontologists have proved, the former cannot be the ancestors of the latter. They have a common ancestor group but their ways diverged at once. The two of them differ fundamentally in the cranium structure, or more precisely, they adapted differently the cranial cavities inherited by them from the Crossopterygii fish. “Ancient Synapsida” occupied these cavities with the jaw muscular system – and acquired strong jaws which were certainly useful. But the other way followed by “real Synapsida” turned out to be even more useful and promising. Due to these cavities they extended the cranium and enlarged the size of brain. The difference is really a fundamental one: one got jars, the other – brain.

All the Synapsida acquired hairy “fur coat” (in contrast to reptiles, which protected the body from drying up by scales), the coat preserved moisture and turned out to be useful in the cold spell conditions. By the end of the palaeozoic, they dominated among land quadrupedals and were extremely diverse: some were of a mouse size, gigantic herbivorous – of a rhinoceros size, and predators - of a tiger size. Their reign lasted for more than 150 million years. At the boundary between the palaeozoic and the Age of Reptiles a catastrophe took place, the reasons for which are still being debated by researchers. The diverse paleozoic world disappeared and the dinosaur era began.

It was assumed for a long time that “ancient Synapsida” – eotherapsida, had disappeared completely. But there emerged a new hypothesis. They did not disappear but reached to our time in the form of duck-bills and echidnas, which in that way are not our ancestors, but first cousins.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>