Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Duck bill and echidna – are they our ancestors or relatives?

25.04.2006
People, as they belong to the mammals, should be particularly interested in the problem of origin of this class in the animal kingdom that has conquered the entire world through evolution: not only the land, but, partly the ocean and the air.

We have already known our ancient ancestors for long – these are medium-sized animals - eutherapsida (which means “real Synapsida”), they appeared at the end of the palaeozoic, approximately 270 million years ago, and continued to develop in the Age of Reptiles – the era of huge dinosaurs’ predominance. Ultimately, dinosaurs became extinct, and eutherapsida, gradually changing, turned into mammals.

However, there are blank spots on this long way, and far from all of its stages are clear once and for all. Thus, investigations by Mikhail Ivakhnenko, Doctor of Biology (Paleontological Institute, Russian Academy of Sciences), make researchers review relations between contemporary mammals and the duck bill and echidna of Australia and the New Guinea long-nosed echidna (Zaglossus). These strangely looking animals belonging to the ovipositor subclass are considered to be primitive mammals (they are also called Prototheria – “primitive animals”).

It is assumed that formerly in the Age of Mammals, they gave rise to contemporary mammals and remained till nowadays. “However, frankly speaking, they are not resembling ordinary mammals that much, says M.F. Ivakhnenko. But, on the other hand, contemporary investigations have revealed suspicious similarity between them and other extinct group of animals – eotherapcida (“ancient Synapsida”). This similarity is particularly connected with specific construction of their auditory apparatus. It looks as if eutherapcida gave origin to only marsupial and placental mammals, and the duck bill, echidna and New Guinea long-nosed echidna (Zaglossus) - are not our ancestors but the top of other branch of evolutionary tree.”

“Ancient Synapsida” had appeared much earlier than “real Synapsida” did, approximately 320 million years ago, and, as paleontologists have proved, the former cannot be the ancestors of the latter. They have a common ancestor group but their ways diverged at once. The two of them differ fundamentally in the cranium structure, or more precisely, they adapted differently the cranial cavities inherited by them from the Crossopterygii fish. “Ancient Synapsida” occupied these cavities with the jaw muscular system – and acquired strong jaws which were certainly useful. But the other way followed by “real Synapsida” turned out to be even more useful and promising. Due to these cavities they extended the cranium and enlarged the size of brain. The difference is really a fundamental one: one got jars, the other – brain.

All the Synapsida acquired hairy “fur coat” (in contrast to reptiles, which protected the body from drying up by scales), the coat preserved moisture and turned out to be useful in the cold spell conditions. By the end of the palaeozoic, they dominated among land quadrupedals and were extremely diverse: some were of a mouse size, gigantic herbivorous – of a rhinoceros size, and predators - of a tiger size. Their reign lasted for more than 150 million years. At the boundary between the palaeozoic and the Age of Reptiles a catastrophe took place, the reasons for which are still being debated by researchers. The diverse paleozoic world disappeared and the dinosaur era began.

It was assumed for a long time that “ancient Synapsida” – eotherapsida, had disappeared completely. But there emerged a new hypothesis. They did not disappear but reached to our time in the form of duck-bills and echidnas, which in that way are not our ancestors, but first cousins.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>