Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Discovery points to more effective ways of regulating cell signalling

A discovery made at The Walter and Eliza Hall Institute provides new insights into enhancing the function of the protein SOCS3, which regulates the response of cells to external stimuli.

SOCS3 (Suppressors of Cytokine Signalling) controls the responses of cells to cytokines (growth factors). It is important that cytokine signalling is properly regulated within the human body. If SOCS3 permits cytokine signalling to be too "loud", then the excess of growth signals can cause crippling inflammatory diseases such as Rheumatoid Arthritis or diseases where cells multiply uncontrollably – cancer.

Conversely, if cytokine signalling is overly repressed by SOCS3, then bone marrow is deprived of sufficient white blood cells required to rejuvenate the damaged immune system following chemotherapy. An unfortunate side effect of chemotherapy is damage caused to the bone marrow that produces the white blood cells of the immune system. This leaves cancer patients prey to opportunistic infections that can delay and adversely affect their recovery.

A cytokine called G-CSF (developed in previous years at WEHI) is in clinical use worldwide to stimulate the restoration of bone marrow and the reinvigoration of the immune system in chemotherapy patients. The success of G-CSF (or Granulocyte Colony Stimulating Factor) depends on the complementary proper functioning of SOCS3.

A research team at WEHI has determined the three-dimensional structure of SOCS3. This discovery about the structure may enable the design of selective inhibitors of SOCS3 that might be useful in extending the activity of G-CSF in restoring white blood cells.

The structure also showed that SOCS3 contains a region that could be engineered out, improving the stability of SOCS3. This newly engineered version of SOCS3 also has the potential to enhance its repressive functions, which may allow inflammatory diseases to be treated more effectively.

Brad Allen | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>