Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery points to more effective ways of regulating cell signalling

24.04.2006
A discovery made at The Walter and Eliza Hall Institute provides new insights into enhancing the function of the protein SOCS3, which regulates the response of cells to external stimuli.

SOCS3 (Suppressors of Cytokine Signalling) controls the responses of cells to cytokines (growth factors). It is important that cytokine signalling is properly regulated within the human body. If SOCS3 permits cytokine signalling to be too "loud", then the excess of growth signals can cause crippling inflammatory diseases such as Rheumatoid Arthritis or diseases where cells multiply uncontrollably – cancer.

Conversely, if cytokine signalling is overly repressed by SOCS3, then bone marrow is deprived of sufficient white blood cells required to rejuvenate the damaged immune system following chemotherapy. An unfortunate side effect of chemotherapy is damage caused to the bone marrow that produces the white blood cells of the immune system. This leaves cancer patients prey to opportunistic infections that can delay and adversely affect their recovery.

A cytokine called G-CSF (developed in previous years at WEHI) is in clinical use worldwide to stimulate the restoration of bone marrow and the reinvigoration of the immune system in chemotherapy patients. The success of G-CSF (or Granulocyte Colony Stimulating Factor) depends on the complementary proper functioning of SOCS3.

A research team at WEHI has determined the three-dimensional structure of SOCS3. This discovery about the structure may enable the design of selective inhibitors of SOCS3 that might be useful in extending the activity of G-CSF in restoring white blood cells.

The structure also showed that SOCS3 contains a region that could be engineered out, improving the stability of SOCS3. This newly engineered version of SOCS3 also has the potential to enhance its repressive functions, which may allow inflammatory diseases to be treated more effectively.

Brad Allen | EurekAlert!
Further information:
http://www.researchaustralia.com.au/

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>