Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel molecular ’signature’ marks DNA of embryonic stem cells

21.04.2006
Scientists uncover signatures near crucial developmental genes; Analysis provides framework for understanding cells’ unusual plasticity

A team of scientists announced today a critical step on the path of realizing the promise of embryonic stem (ES) cells for medicine. As described in the April 21 issue of Cell, the researchers have discovered unique molecular imprints coupled to DNA in mouse ES cells that help explain the cells’ rare ability to form almost any body cell type. These imprints, or "signatures," appear near the master genes that control embryonic development and probably coordinate their activity in the early stages of cell differentiation. Not only do these findings help to unlock the basis for ES cells’ seemingly unlimited potential, they also suggest ways to understand why ordinary cells are so limited in their abilities to repair or replace damaged cells.

"This is an entirely new and unexpected discovery," said Brad Bernstein, lead author of the study, assistant professor at Massachusetts General Hospital and Harvard Medical School, and a researcher in the Chemical Biology program at the Broad Institute. "It has allowed us to glimpse the molecular strategies that cells use to maintain an almost infinite potential, which will have important applications to our understanding of normal biology and disease."

Chromatin–the protein scaffold that surrounds DNA – acts not only as a support for the double helix but also as a kind of gene "gatekeeper." It accomplishes the latter task by selecting which genes to make active or inactive in a cell, based on the nearby chemical tags joined to its backbone. By examining the chromatin in mouse ES cells across the genome, the scientists discovered an unusual pair of overlapping molecular tags in the chromatin structure, which together comprise what they called a "bivalent domain," reflecting the dual nature of its design. These domains reside in the sections of chromatin that control the most evolutionarily conserved portions of DNA, particularly the key regulatory genes for embryonic development.

"These signatures appear frequently in ES cells, but largely disappear once the cells choose a direction developmentally," said Bernstein. "This suggests they play a significant role in regulating the cells’ unique plasticity."

The remarkable design of bivalent domains, which has not been previously described, merges two opposing influences – one that activates genes and another that represses them. When combined in this way, the negative influence seems to prevail and, as a result, the genes positioned near bivalent domains are silenced. However, the activating influence appears to keep the genes poised for later activity. "For genes, this is equivalent to resting one finger on the trigger," said Stuart Schreiber, an author of the Cell paper, the director of the Chemical Biology program at the Broad Institute, and professor at Harvard University. "This approach could be a key strategy for keeping crucial genes quiet, but primed for when they will be most needed."

Although most people think of heredity in terms of DNA and the genes encoded by it, chromatin also carries inherited instructions known as "epigenetic" information. Thus, the chromatin scaffold (including its bivalent domains) forms a sort of molecular memory that, along with DNA, can be transferred from a cell to its descendants. Yet ES cells signify the earliest cellular ancestors, leaving the question of how epigenetic history first begins. The scientists found that bivalent domains coincide with characteristic DNA sequences, indicating that this molecular memory may originate from the DNA itself. "How the initial epigenetic state is established and then altered during development has implications not only for stem cell biology, but also for cancer and other diseases where epigenetic defects are implicated," Bernstein said.

A related study led by Rick Young, a member of the Whitehead Institute and an associate member of the Broad Institute, appears in the same issue of Cell and describes new control features found in human ES cells.

Michelle Nhuch | EurekAlert!
Further information:
http://www.broad.mit.edu

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>