Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows gene candidates for predisposition

20.04.2006
Microarray analysis could help spur new studies, new treatment approaches

The meta analysis, which examined more than 4.5 million data points on more than 100 microarrays from mouse models, also identified more than 1,300 functional groups, including signaling and transcription pathways, which may also play an important role in establishing a capacity for a "high level of alcohol consumption."

The results of the study could lead to a better understanding of the molecular mechanisms underlying the genetic propensity toward excessive drinking and point toward the development of new treatments for alcoholism.

The study, whose lead authors include INIA’s Megan Mulligan, Igor Ponomarev, and Susan Bergeson, was published April 17, 2006 in an advanced online version of The Proceedings of the National Academy of Sciences.

While the function of many of the 3,800 genes identified remains unknown, and could help determine potential levels of alcohol consumption, the study noted that the 75 genes with the largest changes fell into the broad categories of "cellular homeostasis and neuronal function."

George F. Koob, Scripps Research professor, INIA west consortium leader, and participant in the collaborative study, says, "This fact suggests that differences in the ability to maintain or reset homeostasis and adjust neuronal function in the brain may underlie many aspects of an individual’s reaction to alcohol. It is possible that genetic expression differences could substantially affect developmental and adaptive brain neurocircuitry relating to alcohol preference, and that understanding these differences will be key to a better understanding of alcoholism."

The study was careful to point out that although there is considerable similarity between the order of genes between genomes of mice and humans, any direct translation of the data is more likely to work on the pathway level rather than as exact mutations in specific genes.

"The molecular determinants of excessive alcohol consumption are difficult to study in humans," Koob says. "So animal models for alcohol-related traits provide an important opportunity to explore mechanisms responsible for different aspects of what is a uniquely human disease. In particular, mouse models representing various levels of excessive drinking represent valuable tools to identify the genetic components of alcoholism."

The mice used for the microarray analysis were not exposed to alcohol, however. The study defined only the transcriptional signatures of genetic predisposition to high and low levels of alcohol consumption. But the sheer number of differences in those signatures suggests clearly distinct brain pathways between mouse models with different levels of alcohol consumption, which could aid in finding new treatment solutions to the complex problem of alcohol addiction.

"The evidence from human and animal studies supports the hypothesis that alcohol addiction is a complex disease with both hereditary and environmental influences," Koob says. "The meta-analysis of the microarray data, performed by Dr. Mulligan, Dr. Ponomarev, and Dr. Bergeson, clearly showed the complexity of the hereditary side of the equation by the fact that distinct mouse models with genetic predisposition for high levels of alcohol consumption have consistent and reproducible differences in brain gene expression."

Ultimately, Koob says, the meta-analysis offers researchers a significant number of new targets for future study.

"The study led to identification of 20 candidate genes as regulators of alcohol preference that include some genes of unknown function," Koob says. "The fact that we know so little about these genes and key functional groups revealed by our work indicates a rather widespread lack of knowledge about the molecular mechanisms driving alcohol consumption. In addition, the opportunity to study and understand these mechanisms through large-scale genomic screening approaches has not been fully exploited or explored. We hope that our work will help spur new, more expansive research."

The project was led by Megan K. Mulligan, Igor Ponomarev, and Susan Bergeson of the Integrative Neuroscience Initiative on Alcoholism Consortium in collaboration with R. Adron Harris, Yuri A. Blednov, and Vishwanath R. Iyer of the Waggoner Center for Alcohol and Addiction Research and the University of Texas; Robert J. Hitzemann, John K. Belknap, Tamara J. Phillips, Deborah A. Finn, and John C. Crabbe of the Department of Veterans Affairs Medical Center and Oregon Health and Science University; Paula L. Hoffman and Boris Tabakoff of the University of Colorado Health Sciences Center; Nicholas J. Grahame of Indiana University School of Medicine; and George F. Koob of The Scripps Research Institute.

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>