Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows gene candidates for predisposition

20.04.2006
Microarray analysis could help spur new studies, new treatment approaches

The meta analysis, which examined more than 4.5 million data points on more than 100 microarrays from mouse models, also identified more than 1,300 functional groups, including signaling and transcription pathways, which may also play an important role in establishing a capacity for a "high level of alcohol consumption."

The results of the study could lead to a better understanding of the molecular mechanisms underlying the genetic propensity toward excessive drinking and point toward the development of new treatments for alcoholism.

The study, whose lead authors include INIA’s Megan Mulligan, Igor Ponomarev, and Susan Bergeson, was published April 17, 2006 in an advanced online version of The Proceedings of the National Academy of Sciences.

While the function of many of the 3,800 genes identified remains unknown, and could help determine potential levels of alcohol consumption, the study noted that the 75 genes with the largest changes fell into the broad categories of "cellular homeostasis and neuronal function."

George F. Koob, Scripps Research professor, INIA west consortium leader, and participant in the collaborative study, says, "This fact suggests that differences in the ability to maintain or reset homeostasis and adjust neuronal function in the brain may underlie many aspects of an individual’s reaction to alcohol. It is possible that genetic expression differences could substantially affect developmental and adaptive brain neurocircuitry relating to alcohol preference, and that understanding these differences will be key to a better understanding of alcoholism."

The study was careful to point out that although there is considerable similarity between the order of genes between genomes of mice and humans, any direct translation of the data is more likely to work on the pathway level rather than as exact mutations in specific genes.

"The molecular determinants of excessive alcohol consumption are difficult to study in humans," Koob says. "So animal models for alcohol-related traits provide an important opportunity to explore mechanisms responsible for different aspects of what is a uniquely human disease. In particular, mouse models representing various levels of excessive drinking represent valuable tools to identify the genetic components of alcoholism."

The mice used for the microarray analysis were not exposed to alcohol, however. The study defined only the transcriptional signatures of genetic predisposition to high and low levels of alcohol consumption. But the sheer number of differences in those signatures suggests clearly distinct brain pathways between mouse models with different levels of alcohol consumption, which could aid in finding new treatment solutions to the complex problem of alcohol addiction.

"The evidence from human and animal studies supports the hypothesis that alcohol addiction is a complex disease with both hereditary and environmental influences," Koob says. "The meta-analysis of the microarray data, performed by Dr. Mulligan, Dr. Ponomarev, and Dr. Bergeson, clearly showed the complexity of the hereditary side of the equation by the fact that distinct mouse models with genetic predisposition for high levels of alcohol consumption have consistent and reproducible differences in brain gene expression."

Ultimately, Koob says, the meta-analysis offers researchers a significant number of new targets for future study.

"The study led to identification of 20 candidate genes as regulators of alcohol preference that include some genes of unknown function," Koob says. "The fact that we know so little about these genes and key functional groups revealed by our work indicates a rather widespread lack of knowledge about the molecular mechanisms driving alcohol consumption. In addition, the opportunity to study and understand these mechanisms through large-scale genomic screening approaches has not been fully exploited or explored. We hope that our work will help spur new, more expansive research."

The project was led by Megan K. Mulligan, Igor Ponomarev, and Susan Bergeson of the Integrative Neuroscience Initiative on Alcoholism Consortium in collaboration with R. Adron Harris, Yuri A. Blednov, and Vishwanath R. Iyer of the Waggoner Center for Alcohol and Addiction Research and the University of Texas; Robert J. Hitzemann, John K. Belknap, Tamara J. Phillips, Deborah A. Finn, and John C. Crabbe of the Department of Veterans Affairs Medical Center and Oregon Health and Science University; Paula L. Hoffman and Boris Tabakoff of the University of Colorado Health Sciences Center; Nicholas J. Grahame of Indiana University School of Medicine; and George F. Koob of The Scripps Research Institute.

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>