Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows gene candidates for predisposition

20.04.2006
Microarray analysis could help spur new studies, new treatment approaches

The meta analysis, which examined more than 4.5 million data points on more than 100 microarrays from mouse models, also identified more than 1,300 functional groups, including signaling and transcription pathways, which may also play an important role in establishing a capacity for a "high level of alcohol consumption."

The results of the study could lead to a better understanding of the molecular mechanisms underlying the genetic propensity toward excessive drinking and point toward the development of new treatments for alcoholism.

The study, whose lead authors include INIA’s Megan Mulligan, Igor Ponomarev, and Susan Bergeson, was published April 17, 2006 in an advanced online version of The Proceedings of the National Academy of Sciences.

While the function of many of the 3,800 genes identified remains unknown, and could help determine potential levels of alcohol consumption, the study noted that the 75 genes with the largest changes fell into the broad categories of "cellular homeostasis and neuronal function."

George F. Koob, Scripps Research professor, INIA west consortium leader, and participant in the collaborative study, says, "This fact suggests that differences in the ability to maintain or reset homeostasis and adjust neuronal function in the brain may underlie many aspects of an individual’s reaction to alcohol. It is possible that genetic expression differences could substantially affect developmental and adaptive brain neurocircuitry relating to alcohol preference, and that understanding these differences will be key to a better understanding of alcoholism."

The study was careful to point out that although there is considerable similarity between the order of genes between genomes of mice and humans, any direct translation of the data is more likely to work on the pathway level rather than as exact mutations in specific genes.

"The molecular determinants of excessive alcohol consumption are difficult to study in humans," Koob says. "So animal models for alcohol-related traits provide an important opportunity to explore mechanisms responsible for different aspects of what is a uniquely human disease. In particular, mouse models representing various levels of excessive drinking represent valuable tools to identify the genetic components of alcoholism."

The mice used for the microarray analysis were not exposed to alcohol, however. The study defined only the transcriptional signatures of genetic predisposition to high and low levels of alcohol consumption. But the sheer number of differences in those signatures suggests clearly distinct brain pathways between mouse models with different levels of alcohol consumption, which could aid in finding new treatment solutions to the complex problem of alcohol addiction.

"The evidence from human and animal studies supports the hypothesis that alcohol addiction is a complex disease with both hereditary and environmental influences," Koob says. "The meta-analysis of the microarray data, performed by Dr. Mulligan, Dr. Ponomarev, and Dr. Bergeson, clearly showed the complexity of the hereditary side of the equation by the fact that distinct mouse models with genetic predisposition for high levels of alcohol consumption have consistent and reproducible differences in brain gene expression."

Ultimately, Koob says, the meta-analysis offers researchers a significant number of new targets for future study.

"The study led to identification of 20 candidate genes as regulators of alcohol preference that include some genes of unknown function," Koob says. "The fact that we know so little about these genes and key functional groups revealed by our work indicates a rather widespread lack of knowledge about the molecular mechanisms driving alcohol consumption. In addition, the opportunity to study and understand these mechanisms through large-scale genomic screening approaches has not been fully exploited or explored. We hope that our work will help spur new, more expansive research."

The project was led by Megan K. Mulligan, Igor Ponomarev, and Susan Bergeson of the Integrative Neuroscience Initiative on Alcoholism Consortium in collaboration with R. Adron Harris, Yuri A. Blednov, and Vishwanath R. Iyer of the Waggoner Center for Alcohol and Addiction Research and the University of Texas; Robert J. Hitzemann, John K. Belknap, Tamara J. Phillips, Deborah A. Finn, and John C. Crabbe of the Department of Veterans Affairs Medical Center and Oregon Health and Science University; Paula L. Hoffman and Boris Tabakoff of the University of Colorado Health Sciences Center; Nicholas J. Grahame of Indiana University School of Medicine; and George F. Koob of The Scripps Research Institute.

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Matabele ants: Travelling faster with detours

22.05.2018 | Life Sciences

Flow of cerebrospinal fluid regulates neural stem cell division

22.05.2018 | Life Sciences

Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal

22.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>