Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop new concept with potential to help predict how individuals may respond to drugs

20.04.2006
Scientists from Imperial College London and Pfizer have developed a new method that could predict individual patient responses to drug treatments. The authors anticipate that the development will advance biomedical research further towards development of personalised medicines.

Research published today in Nature demonstrates the new ‘pharmaco-metabonomic’ approach that uses a combination of advanced chemical analysis and mathematical modelling to predict drug-induced responses in individual patients. The method is based on analysis of the body’s normal metabolic products, metabolites, and metabolite patterns that are characteristic of the individual. The authors hypothesize that these individual patterns can be used to diagnose diseases, predict an individual’s future illnesses, and their responses to treatments.

Not all drugs are effective in all patients and in rare cases adverse drug reactions can occur in susceptible individuals. To address this, researchers from Imperial College and Pfizer have been exploring new methods for profiling individuals prior to drug therapy. The new approach, if successful, requires the analysis of the metabolite profiles of an individual from a urine, or other biofluid, sample.

The researchers tested their approach by administering paracetamol to rats and measuring how it affected their livers and how it was excreted. Before giving the dose they measured the levels of the natural metabolites in the rats’ urine. Metabolites being small molecules produced by normal body functions, they can indicate a body’s drug response. After creating a ‘pre-dose urinary profile’ for each rat, the researchers used computer modelling to relate the nature of the pre-dose metabolite profile to the nature of the post-dose response.

Professor Jeremy Nicholson, from Imperial College London, who led the research, says: “This new technique is potentially of huge importance to the future of healthcare and the pharmaceutical industry. The ‘pharmaco-metabonomic’ approach is able to account for genetic as well as many environmental factors, and other important contributors to individual health such as the gut microfloral activity. These factors strongly influence how an individual absorbs and processes a drug and also influence their individual metabolism, making this new approach the first step towards the development of more personalised healthcare for large numbers of patients.”

The discovery of this new technology for predicting responses to drugs, which is not limited to individual genetic differences, will hopefully be a key component in the pharmaceutical industry’s aim to understand how patients might benefit from more individualised therapies. The new method is expected to be synergistic with existing pharmacogenomic approaches.

The new methodology is in early stage of development and will be studied in humans to evaluate its possible clinical application. The researchers hope this new technique might one day allow doctors to personalise drug treatments for some individuals, providing physicians with the ability to prescribe medicines that will be most effective for certain patient groups, and at a tailored dose-range for maximum efficacy and safety.

Tony Stephenson | alfa
Further information:
http://www.imperial.ac.uk

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>