Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oxidation defense in mosquitoes benefits malaria parasite

04.04.2006
Scientists discover structure of defense process, how to inhibit it

Scientists from two universities in Italy and Virginia Tech in the United States have determined the structure of a protein that is responsible for the production xanthurenic acid (XA) in Anopheles gambiae, the malaria carrying mosquitoes. XA plays a key role in the sexual reproduction of the malaria parasite (Plasmodium falciparum) in A. gambiae mosquitoes. Interfering with the formation of XA could be an avenue for development of drugs and insecticides to block malaria transmission. Millions of people worldwide are infected with malaria.

The research will be presented in the Proceedings of the National Academy of Science (PNAS) on-line as early as April 3 and in print April 11, 2006 ("Crystal structure of the Anopheles gambiae 3-hydroxykynurenine transaminase" by Franca Rossi, Silvia Garavaglia, and Giovanni Battista Giovenzana, of the DiSCAFF-Drug and Food Biotechnology Center at the University of Piemonte Orientale ’Amedeo Avogadro’; Bruno Arca’ of the Department of Biological Structure and Function at the University of Napoli ’Federico II’; Jianyong Li of the Department of Biochemistry at Virginia Tech, and Menico Rizzi, also of the University of Piemonte Orientale).

The synthesis of XA is one of the biochemical defenses against oxidative stress resulting from 3-hydroxykynurenine (3-HK) accumulation in mosquitoes and possibly other species as well. "3-HK is oxidized easily under physiological condition, stimulating the production of reactive oxygen species, which can damage cells," said Li.

Mammals have various biochemical pathways of disposing of 3-HK, which mosquitoes lack. Research by Li’s group at Virginia Tech on Aedes aegypti mosquitoes determined that "mosquitoes have developed an efficient strategy to prevent the accumulation of 3-HK by converting the chemically reactive 3-HK to the chemically stable XA via transaminase-mediated reactions," said Li.

The protein described in the PNAS article is responsible for this transforming of 3-HK into XA in the malaria vector Anopheles gambiae, where XA also helps the malarial parasite reproduce. So stopping the oxidative defense could stop the parasite as well as make the insect a victim of oxidative stress.

Rizzi’s group at the University of Piemonte Orientale focuses on the structural characterization of enzymes involved in tryptophan degradation in mosquitoes, which results in the synthesis of XA. "Deciphering the molecular architecture of each enzyme in this pathway will be used for the structure-based rational design of potent and highly selective inhibitors of potential interest as innovative antimalarial agents," said Rizzi

Li’s group at Virginia Tech biochemically characterizes enzymes involved in conversion to XA, including trptophan, the initial precursor of the process.

The researchers have collaborated since 2003.

"The use of protein crystallography in combination with biochemical studies and medicinal chemistry, represents a highly multidisciplinary approach that could lead to the identification of novel agents for the treatment of malaria," said Rizzi.

The PNAS article describes what an International team of scientists learned about the structure of Anopheles gambiae 3-HK transaminase. The research will continue on the rational design of a small molecule that could be synthesized, and that would allow the malaria cycle to be interrupted, therefore representing a novel avenue for the treatment of malaria.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>