Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oxidation defense in mosquitoes benefits malaria parasite

04.04.2006
Scientists discover structure of defense process, how to inhibit it

Scientists from two universities in Italy and Virginia Tech in the United States have determined the structure of a protein that is responsible for the production xanthurenic acid (XA) in Anopheles gambiae, the malaria carrying mosquitoes. XA plays a key role in the sexual reproduction of the malaria parasite (Plasmodium falciparum) in A. gambiae mosquitoes. Interfering with the formation of XA could be an avenue for development of drugs and insecticides to block malaria transmission. Millions of people worldwide are infected with malaria.

The research will be presented in the Proceedings of the National Academy of Science (PNAS) on-line as early as April 3 and in print April 11, 2006 ("Crystal structure of the Anopheles gambiae 3-hydroxykynurenine transaminase" by Franca Rossi, Silvia Garavaglia, and Giovanni Battista Giovenzana, of the DiSCAFF-Drug and Food Biotechnology Center at the University of Piemonte Orientale ’Amedeo Avogadro’; Bruno Arca’ of the Department of Biological Structure and Function at the University of Napoli ’Federico II’; Jianyong Li of the Department of Biochemistry at Virginia Tech, and Menico Rizzi, also of the University of Piemonte Orientale).

The synthesis of XA is one of the biochemical defenses against oxidative stress resulting from 3-hydroxykynurenine (3-HK) accumulation in mosquitoes and possibly other species as well. "3-HK is oxidized easily under physiological condition, stimulating the production of reactive oxygen species, which can damage cells," said Li.

Mammals have various biochemical pathways of disposing of 3-HK, which mosquitoes lack. Research by Li’s group at Virginia Tech on Aedes aegypti mosquitoes determined that "mosquitoes have developed an efficient strategy to prevent the accumulation of 3-HK by converting the chemically reactive 3-HK to the chemically stable XA via transaminase-mediated reactions," said Li.

The protein described in the PNAS article is responsible for this transforming of 3-HK into XA in the malaria vector Anopheles gambiae, where XA also helps the malarial parasite reproduce. So stopping the oxidative defense could stop the parasite as well as make the insect a victim of oxidative stress.

Rizzi’s group at the University of Piemonte Orientale focuses on the structural characterization of enzymes involved in tryptophan degradation in mosquitoes, which results in the synthesis of XA. "Deciphering the molecular architecture of each enzyme in this pathway will be used for the structure-based rational design of potent and highly selective inhibitors of potential interest as innovative antimalarial agents," said Rizzi

Li’s group at Virginia Tech biochemically characterizes enzymes involved in conversion to XA, including trptophan, the initial precursor of the process.

The researchers have collaborated since 2003.

"The use of protein crystallography in combination with biochemical studies and medicinal chemistry, represents a highly multidisciplinary approach that could lead to the identification of novel agents for the treatment of malaria," said Rizzi.

The PNAS article describes what an International team of scientists learned about the structure of Anopheles gambiae 3-HK transaminase. The research will continue on the rational design of a small molecule that could be synthesized, and that would allow the malaria cycle to be interrupted, therefore representing a novel avenue for the treatment of malaria.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>