Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researches Discover Gene Critical for Protection Against Septic-Shock-Induced Death

04.04.2006
Findings May Offer Therapeutic Potential for Sepsis Treatment

Disruption of a single gene, Nrf2, plays a critical role in regulating the body’s innate immune response to sepsis and septic shock, according to a study by a research team led by Shyam Biswal, PhD, at the Johns Hopkins Bloomberg School of Public Health. The researchers found that the absence of Nrf2 caused a dramatic increase in mortality due to septic shock in mice. The study’s findings, which will be published in the April 2006 issue of the Journal of Clinical Investigation, may hold potential for the treatment of life-threatening sepsis.

Sepsis is a complex disease characterized by an increased inflammatory response in the body’s attempt to combat an infection from microorganisms such as bacteria, fungi or viruses. A weak host inflammatory response can lead to greater infection, whereas an excessive inflammatory response may lead to tissue damage, myocardial injury, acute respiratory failure, multiple organ failure or death. Controlling inflammation is thus a central focus of treating sepsis. Researchers have been hunting for novel host genes that regulate inflammation as potential targets for the next generation of sepsis therapies. The incidence of sepsis in the United States ranges from 400,000 to 750,000 cases per year. Mortality due to sepsis is around 30 percent and increases with age from 10 percent in children to 40 percent in the elderly. Mortality is 50 percent or greater in patients with the more severe syndrome, septic shock.

Suspecting that a dysregulation in the body’s inflammatory response exacerbates sepsis, the research team began looking into the genetic factors that might contribute to this syndrome. In 2002, Biswal and his colleagues discovered that Nrf2 acts as a primary regulator of most of the cellular antioxidant pathways and detoxifying enzymes that protect the body from a wide variety of environmental toxicants. In subsequent studies, they discovered that Nrf2 is a pleiotropic protein that regulates a broad spectrum of genes used by the host to defend against a variety of stresses, including oxidative and inflammatory diseases such as cigarette-smoke-inducedemphysema and allergic asthma in mice models.

Biswal’s team found that the deletion of the Nrf2 gene increased the inflammatory response and caused early death in mice subjected to septic peritonitis or endotoxin shock or both. Mice deficient in Nrf2 gene expressed dramatically increased levels of effector molecules (cytokines) that mediate innate immune response, the body’s first line of defense. “Sepsis syndrome is like a speeding car with a brake failure. Nrf2 may function like a brake that regulates the speed,” said Biswal, senior author of the study and assistant professor in the Bloomberg School’s Department of Environmental Health Sciences. Biswal speculates that suboptimal function of Nrf2 may be one reason why some intensive-care patients progress into severe sepsis and die.

“Nrf2 protects from septic shock by two mechanisms,” explained lead author Rajesh Thimmulappa, PhD, a postdoctoral fellow at Environmental Health Sciences, Bloomberg School of Public Health. “First, Nrf2 protects from dysregulation of host inflammatory response, which is a characteristic feature of septic shock. Secondly, Nrf2 protects from oxidative pathological damage, the main cause of multi-organ failure during septic shock. Hence, Nrf2 can be a promising therapeutic target for attenuating septic-related deaths.”

According to Biswal, the findings provide a better understanding of the human body’s defense mechanisms to sepsis and septic shock, and may provide clues to designing novel therapies that could minimize mortality. The researchers are now trying to find if activation of Nrf2 by a small-molecule drug can minimize pathological damage and improve survival during sepsis caused by bacteria or viruses. Future studies will determine the therapeutic potential of targeting Nrf2 for treatment of sepsis and other inflammatory diseases that impact public health.

The other coauthors of the study are Hannah Lee, Tirumalai Rangasamy, Sekhar P. Reddy, Masayuki Yamamoto , Thomas W. Kensler.

This work was supported by NIH grants- HL081205 (S. Biswal), P50 CA058184, NIEHS center grant P30 ES 038819, Young Clinical Scientist award from Flight Attendant Research Institute (S. Biswal), The Maryland Cigarette Restitution Fund (S. Biswal); CA94076 (T.W. Kensler) and P50 HL073994 (S.P. Reddy)”.

Tim Parsons | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>