Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researches Discover Gene Critical for Protection Against Septic-Shock-Induced Death

04.04.2006
Findings May Offer Therapeutic Potential for Sepsis Treatment

Disruption of a single gene, Nrf2, plays a critical role in regulating the body’s innate immune response to sepsis and septic shock, according to a study by a research team led by Shyam Biswal, PhD, at the Johns Hopkins Bloomberg School of Public Health. The researchers found that the absence of Nrf2 caused a dramatic increase in mortality due to septic shock in mice. The study’s findings, which will be published in the April 2006 issue of the Journal of Clinical Investigation, may hold potential for the treatment of life-threatening sepsis.

Sepsis is a complex disease characterized by an increased inflammatory response in the body’s attempt to combat an infection from microorganisms such as bacteria, fungi or viruses. A weak host inflammatory response can lead to greater infection, whereas an excessive inflammatory response may lead to tissue damage, myocardial injury, acute respiratory failure, multiple organ failure or death. Controlling inflammation is thus a central focus of treating sepsis. Researchers have been hunting for novel host genes that regulate inflammation as potential targets for the next generation of sepsis therapies. The incidence of sepsis in the United States ranges from 400,000 to 750,000 cases per year. Mortality due to sepsis is around 30 percent and increases with age from 10 percent in children to 40 percent in the elderly. Mortality is 50 percent or greater in patients with the more severe syndrome, septic shock.

Suspecting that a dysregulation in the body’s inflammatory response exacerbates sepsis, the research team began looking into the genetic factors that might contribute to this syndrome. In 2002, Biswal and his colleagues discovered that Nrf2 acts as a primary regulator of most of the cellular antioxidant pathways and detoxifying enzymes that protect the body from a wide variety of environmental toxicants. In subsequent studies, they discovered that Nrf2 is a pleiotropic protein that regulates a broad spectrum of genes used by the host to defend against a variety of stresses, including oxidative and inflammatory diseases such as cigarette-smoke-inducedemphysema and allergic asthma in mice models.

Biswal’s team found that the deletion of the Nrf2 gene increased the inflammatory response and caused early death in mice subjected to septic peritonitis or endotoxin shock or both. Mice deficient in Nrf2 gene expressed dramatically increased levels of effector molecules (cytokines) that mediate innate immune response, the body’s first line of defense. “Sepsis syndrome is like a speeding car with a brake failure. Nrf2 may function like a brake that regulates the speed,” said Biswal, senior author of the study and assistant professor in the Bloomberg School’s Department of Environmental Health Sciences. Biswal speculates that suboptimal function of Nrf2 may be one reason why some intensive-care patients progress into severe sepsis and die.

“Nrf2 protects from septic shock by two mechanisms,” explained lead author Rajesh Thimmulappa, PhD, a postdoctoral fellow at Environmental Health Sciences, Bloomberg School of Public Health. “First, Nrf2 protects from dysregulation of host inflammatory response, which is a characteristic feature of septic shock. Secondly, Nrf2 protects from oxidative pathological damage, the main cause of multi-organ failure during septic shock. Hence, Nrf2 can be a promising therapeutic target for attenuating septic-related deaths.”

According to Biswal, the findings provide a better understanding of the human body’s defense mechanisms to sepsis and septic shock, and may provide clues to designing novel therapies that could minimize mortality. The researchers are now trying to find if activation of Nrf2 by a small-molecule drug can minimize pathological damage and improve survival during sepsis caused by bacteria or viruses. Future studies will determine the therapeutic potential of targeting Nrf2 for treatment of sepsis and other inflammatory diseases that impact public health.

The other coauthors of the study are Hannah Lee, Tirumalai Rangasamy, Sekhar P. Reddy, Masayuki Yamamoto , Thomas W. Kensler.

This work was supported by NIH grants- HL081205 (S. Biswal), P50 CA058184, NIEHS center grant P30 ES 038819, Young Clinical Scientist award from Flight Attendant Research Institute (S. Biswal), The Maryland Cigarette Restitution Fund (S. Biswal); CA94076 (T.W. Kensler) and P50 HL073994 (S.P. Reddy)”.

Tim Parsons | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>