Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researches Discover Gene Critical for Protection Against Septic-Shock-Induced Death

04.04.2006
Findings May Offer Therapeutic Potential for Sepsis Treatment

Disruption of a single gene, Nrf2, plays a critical role in regulating the body’s innate immune response to sepsis and septic shock, according to a study by a research team led by Shyam Biswal, PhD, at the Johns Hopkins Bloomberg School of Public Health. The researchers found that the absence of Nrf2 caused a dramatic increase in mortality due to septic shock in mice. The study’s findings, which will be published in the April 2006 issue of the Journal of Clinical Investigation, may hold potential for the treatment of life-threatening sepsis.

Sepsis is a complex disease characterized by an increased inflammatory response in the body’s attempt to combat an infection from microorganisms such as bacteria, fungi or viruses. A weak host inflammatory response can lead to greater infection, whereas an excessive inflammatory response may lead to tissue damage, myocardial injury, acute respiratory failure, multiple organ failure or death. Controlling inflammation is thus a central focus of treating sepsis. Researchers have been hunting for novel host genes that regulate inflammation as potential targets for the next generation of sepsis therapies. The incidence of sepsis in the United States ranges from 400,000 to 750,000 cases per year. Mortality due to sepsis is around 30 percent and increases with age from 10 percent in children to 40 percent in the elderly. Mortality is 50 percent or greater in patients with the more severe syndrome, septic shock.

Suspecting that a dysregulation in the body’s inflammatory response exacerbates sepsis, the research team began looking into the genetic factors that might contribute to this syndrome. In 2002, Biswal and his colleagues discovered that Nrf2 acts as a primary regulator of most of the cellular antioxidant pathways and detoxifying enzymes that protect the body from a wide variety of environmental toxicants. In subsequent studies, they discovered that Nrf2 is a pleiotropic protein that regulates a broad spectrum of genes used by the host to defend against a variety of stresses, including oxidative and inflammatory diseases such as cigarette-smoke-inducedemphysema and allergic asthma in mice models.

Biswal’s team found that the deletion of the Nrf2 gene increased the inflammatory response and caused early death in mice subjected to septic peritonitis or endotoxin shock or both. Mice deficient in Nrf2 gene expressed dramatically increased levels of effector molecules (cytokines) that mediate innate immune response, the body’s first line of defense. “Sepsis syndrome is like a speeding car with a brake failure. Nrf2 may function like a brake that regulates the speed,” said Biswal, senior author of the study and assistant professor in the Bloomberg School’s Department of Environmental Health Sciences. Biswal speculates that suboptimal function of Nrf2 may be one reason why some intensive-care patients progress into severe sepsis and die.

“Nrf2 protects from septic shock by two mechanisms,” explained lead author Rajesh Thimmulappa, PhD, a postdoctoral fellow at Environmental Health Sciences, Bloomberg School of Public Health. “First, Nrf2 protects from dysregulation of host inflammatory response, which is a characteristic feature of septic shock. Secondly, Nrf2 protects from oxidative pathological damage, the main cause of multi-organ failure during septic shock. Hence, Nrf2 can be a promising therapeutic target for attenuating septic-related deaths.”

According to Biswal, the findings provide a better understanding of the human body’s defense mechanisms to sepsis and septic shock, and may provide clues to designing novel therapies that could minimize mortality. The researchers are now trying to find if activation of Nrf2 by a small-molecule drug can minimize pathological damage and improve survival during sepsis caused by bacteria or viruses. Future studies will determine the therapeutic potential of targeting Nrf2 for treatment of sepsis and other inflammatory diseases that impact public health.

The other coauthors of the study are Hannah Lee, Tirumalai Rangasamy, Sekhar P. Reddy, Masayuki Yamamoto , Thomas W. Kensler.

This work was supported by NIH grants- HL081205 (S. Biswal), P50 CA058184, NIEHS center grant P30 ES 038819, Young Clinical Scientist award from Flight Attendant Research Institute (S. Biswal), The Maryland Cigarette Restitution Fund (S. Biswal); CA94076 (T.W. Kensler) and P50 HL073994 (S.P. Reddy)”.

Tim Parsons | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>