Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New device could cut chemotherapy deaths

03.04.2006
A new method of delivering chemotherapy to cancer patients without incurring side effects such as hair loss and vomiting is being developed.

The method, produced at the University of Bath, involves using tiny fibres and beads soaked in the chemotherapy drug which are then implanted into the cancerous area in the patient’s body.

These fibres are bio-degradable and compatible with body tissue, which means they would not be rejected by the patient’s body. They gradually turn from solid to liquid, releasing a regular flow of the chemotherapy chemical into the cancer site, and a much lower dose to the rest of the body.

This is a more localised way of killing cancer cells than the current method of injecting the chemical into a cancer sufferer’s vein so that it is carried around the body.

As well as reducing the side-effects, the new drug delivery vehicle, known as Fibrasorb, could also cut the numbers of patients who die from the effects of chemotherapy because they need such high doses to tackle their cancer.

The method, developed by Dr Semali Perera, of the University’s Department of Chemical Engineering, over the past few years, has successfully gone through preliminary laboratory trials. The first clinical trials on volunteer patients with ovarian cancer in Avon, Somerset and Wiltshire could begin in the next few years and, if successful, the technology could be put into general use.

The research team at Bath is collaborating closely with the Avon, Somerset and Wiltshire Cancer Centre and the oncology team at the Royal United Hospital for the design and development of these drug delivery vehicles. This team includes Dr Ed Gilby, one of the most experienced consultant oncologists, surgeons Mr Nicholas Johnson and Mr Kenneth Jaaback, clinical trials experts and specialist nurses such as Tracie Miles.

“Side effects from chemotherapy can be very unpleasant and sometimes fatal,” said Dr Perera.

“The new fibres and beads could cut out some side-effects entirely, including nausea and vomiting, and could reduce the number of people who die each year.

“Although the first study will be on patients with ovarian cancer, soon we hope that other cancer sufferers with solid tumours will benefit.

“Give that around one in eight people worldwide die of cancer, this could be a vitally important step in the treatment of this disease.

“We have now assembled an extremely experienced team to develop the Fibrasorb technology."

The Fibrasorb technology is a flexible fully resorbable device that can be formulated as a bead, a fibre or mesh, or as a tube put into the body which leads outside the body and through which drugs can be fed.

For the pre-clinical studies, funded by the Department of Health, Dr Perera will be working closely with Dr Vasanta Subramanian, a lecturer in the University’s Department of Biology & Biochemistry. Dr Subramanian is a cell and molecular biologist with extensive research experience in gastrointestinal cancers and stem cells in the gastrointestinal tract.

Dr Perera has also been working with the University’s Department of Pharmacy & Pharmacology to make the fibres more sterile so they cannot be attacked by harmful bacteria.

Dr Perera said that other researchers had worked on using tiny beads as a way of delivering drugs locally, but the new system showed greater promise because it could achieve better control when delivering the drug.

A patent application has been filed on the drug delivery system, and drug companies across the world are expected to express great interest in the new technology.

Tony Trueman | alfa
Further information:
http://www.bath.ac.uk

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>