Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New device could cut chemotherapy deaths

03.04.2006
A new method of delivering chemotherapy to cancer patients without incurring side effects such as hair loss and vomiting is being developed.

The method, produced at the University of Bath, involves using tiny fibres and beads soaked in the chemotherapy drug which are then implanted into the cancerous area in the patient’s body.

These fibres are bio-degradable and compatible with body tissue, which means they would not be rejected by the patient’s body. They gradually turn from solid to liquid, releasing a regular flow of the chemotherapy chemical into the cancer site, and a much lower dose to the rest of the body.

This is a more localised way of killing cancer cells than the current method of injecting the chemical into a cancer sufferer’s vein so that it is carried around the body.

As well as reducing the side-effects, the new drug delivery vehicle, known as Fibrasorb, could also cut the numbers of patients who die from the effects of chemotherapy because they need such high doses to tackle their cancer.

The method, developed by Dr Semali Perera, of the University’s Department of Chemical Engineering, over the past few years, has successfully gone through preliminary laboratory trials. The first clinical trials on volunteer patients with ovarian cancer in Avon, Somerset and Wiltshire could begin in the next few years and, if successful, the technology could be put into general use.

The research team at Bath is collaborating closely with the Avon, Somerset and Wiltshire Cancer Centre and the oncology team at the Royal United Hospital for the design and development of these drug delivery vehicles. This team includes Dr Ed Gilby, one of the most experienced consultant oncologists, surgeons Mr Nicholas Johnson and Mr Kenneth Jaaback, clinical trials experts and specialist nurses such as Tracie Miles.

“Side effects from chemotherapy can be very unpleasant and sometimes fatal,” said Dr Perera.

“The new fibres and beads could cut out some side-effects entirely, including nausea and vomiting, and could reduce the number of people who die each year.

“Although the first study will be on patients with ovarian cancer, soon we hope that other cancer sufferers with solid tumours will benefit.

“Give that around one in eight people worldwide die of cancer, this could be a vitally important step in the treatment of this disease.

“We have now assembled an extremely experienced team to develop the Fibrasorb technology."

The Fibrasorb technology is a flexible fully resorbable device that can be formulated as a bead, a fibre or mesh, or as a tube put into the body which leads outside the body and through which drugs can be fed.

For the pre-clinical studies, funded by the Department of Health, Dr Perera will be working closely with Dr Vasanta Subramanian, a lecturer in the University’s Department of Biology & Biochemistry. Dr Subramanian is a cell and molecular biologist with extensive research experience in gastrointestinal cancers and stem cells in the gastrointestinal tract.

Dr Perera has also been working with the University’s Department of Pharmacy & Pharmacology to make the fibres more sterile so they cannot be attacked by harmful bacteria.

Dr Perera said that other researchers had worked on using tiny beads as a way of delivering drugs locally, but the new system showed greater promise because it could achieve better control when delivering the drug.

A patent application has been filed on the drug delivery system, and drug companies across the world are expected to express great interest in the new technology.

Tony Trueman | alfa
Further information:
http://www.bath.ac.uk

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>