Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find better prostate cancer indicators

29.03.2006
Identifying alterations in DNA methylation may also be useful in determining cancer progression
Researchers at Mayo Clinic have narrowed the search for effective prostate cancer biomarkers (genetic variations that point to a specific disease or condition), identifying changes in the expression of genes of the whole genome closely correlated to prostate cancer development and progression. They also showed that DNA hypermethylation (DNA modification without changing sequence) plays a significant role in these processes. Results of their study were published in the Feb. 15 issue of Clinical Cancer Research.

"This is good news in an area where our ability to diagnose and predict has previously been less than stellar," said Krishna Donkena, Ph.D., Mayo Clinic urologic researcher. "Our only tool is the PSA test, which has little predictive value. These findings move us much closer to a more accurate test."

The search to identify biomarkers that can be translated into affordable and effective medical tests can be complicated. Prostate cancer causes differential expression of hundreds of different genes, each potentially an indicator of whether a man may get the disease, or already has it. They also may be used to provide information on the development of the cancer, without the need for a painful tumor biopsy.

When seeking to narrow their search to a manageable level, the researchers analyzed 32 cancerous and eight benign patient-tissue samples using genome microarrays representing 33,000 human genes. The information they gleaned from this analysis allowed them to identify 624 differentially-expressed genes between cancerous and benign tissue. They validated these findings in the original 40 tissue samples as well as in 32 additional samples (20 cancerous, 12 benign). The results showed eight genes with significant under-expression and three with significant over-expression, strongly implicating them in prostate cancer development and progression.

Over the years, research has shown that DNA methylation is commonly linked to the development and progression of cancers. This epi-genetic alteration results in silencing or seriously inhibiting gene expression, which in turn lessens the body’s ability to defend against cancer. Current research has not done enough to discover ways to convert this information into a useful medical test, in large part due to the limited number of genes that have been thoroughly studied, and their insufficient sensitivity and specificity (probability of getting a true positive or true negative) for prostate cancer detection.

Dr. Donkena’s team looked at 62 cancerous and 36 benign tissue samples to assess the degree of methylation in the three previously identified under-expressed genes, comparing two known methylated genes. They determined that one gene, PDLIM4, had hypermethylation that could serve as an effective sensitivity marker, accurately detecting prostate cancer 95 percent of the time. The researchers further determined that the combined measurement of a previously known gene, GSTP1, and PDLIM4 improved the detection rate to 98 percent.

Prostate cancer is the second leading cause of cancer death for men in the United States, exceeded only by lung cancer. The sooner a cancer can be diagnosed, the better treatment outcomes will be, so Dr. Donkena and her colleagues are constantly looking for ways to predict who will get prostate cancer, as well as to find better ways to diagnose early or even prevent this disabling and often fatal disease. "We hope that in addition to being a valuable diagnostic and prognostic tool, our discoveries about these genes will help us develop new treatments for prostate cancer," she said.

Other Mayo researchers involved in this study include Karla Ballman, Ph.D.; Bruce Morlan; John Cheville, M.D.; Roxann Neumann; Michael Lieber, M.D.; Donald Tindall, Ph.D.; and Charles Young, Ph.D.

Elizabeth Zimmermann | EurekAlert!
Further information:
http://www.mayoclinic.com
http://spores.nic.nih.gov
http://cancercenter.mayo.edu/mayo/research/prostate_program

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>