Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warbling Whales Speak a Language All Their Own

23.03.2006


The songs of the humpback whale are among the most complex in the animal kingdom. Researchers have now mathematically confirmed that whales have their own syntax that uses sound units to build phrases that can be combined to form songs that last for hours.



Until now, only humans have demonstrated the ability to use such a hierarchical structure of communication. The research, published online in the March 2006 issue of the Journal of the Acoustical Society of America, offers a new approach to studying animal communication, although the authors do not claim that humpback whale songs meet the linguistic rigor necessary for a true language.

"Humpback songs are not like human language, but elements of language are seen in their songs," said Ryuji Suzuki, a Howard Hughes Medical Institute (HHMI) predoctoral fellow in neuroscience at Massachusetts Institute of Technology and first author of the paper.


With limited sight and sense of smell in water, marine mammals are more dependent on sound—which travels four times faster in water than air—to communicate. For six months each year, all male humpback whales in a population sing the same song during mating season. Thought to attract females, the song evolves over time.

Suzuki and co-authors John Buck and Peter Tyack applied the tools of information theory—a mathematical study of data encoding and transmission—to analyze the complex patterns of moans, cries, and chirps in the whales’ songs for clues to the information being conveyed. Buck is an electrical engineer who specializes in signal processing and underwater acoustics at the University of Massachusetts Dartmouth, and Tyack is a biologist at Woods Hole Oceanographic Institution in Massachusetts.

Suzuki, who began the project as an electrical engineering undergraduate at the University of Massachusetts, Dartmouth, worked with Buck and Tyack to develop a computer program to break down the elements of the whale’s song and assign an abstract symbol to each of those elements. Suzuki wanted to see if he could design a computer program that enabled scientists to classify the structure of the whales’ songs.

He used the program to analyze structural characteristics of the humpback songs recorded in Hawaii. To measure a song’s complexity, Suzuki analyzed the average amount of information conveyed per symbol. He then asked human observers who had no previous knowledge of the structure of the whale songs to classify them in terms of complexity, redundancy, and predictability. The computer-generated model and the human observers agreed that the songs are hierarchical, confirming a theory first proposed by biologists Roger Payne and Scott McVay in 1971.

Suzuki said that information theory also enabled the researchers to determine how much information can be conveyed in a whale song. Despite the "human-like" use of hierarchical syntax to communicate, Suzuki and his colleagues found that whale songs convey less than one bit of information per second. By comparison, humans speaking English generate 10 bits of information for each word spoken. "Although whale song is nothing like human language, I wouldn’t be surprised if some marine mammals have the ability to communicate in a complex way," said Suzuki. "Given that the underwater environment is very different from our world, it is not surprising that they would communicate in rather a different way from land mammals."

The structure of the humpback whale song is repetitive and rigid. The whales repeat unique phrases made up of short and long segments to craft a song. There are multiple layers, or scales, of repetition, denoted as periodicities. One scale is made up of six units, while a longer one consists of 180-400 units. The combined periodicities give the song its hierarchical structure.

Suzuki compared his new technique for animal communication research with more traditional models, such as the first order Markov model that is used to analyze bird songs, which are often shorter and simpler in structure than humpback whale songs. The Markov model proved inadequate for the whale song’s complex structure.

Information theory, in contrast, proved perfect for analyzing humpback whale songs because it provided a quantitative analysis of the complexity and structure of the songs. "Information theory was the right choice because it allows one to study the structure of humpback songs without knowing what they mean," said Suzuki.

"I hope that knowing the hierarchical structure in humpback songs will inform research in other fields, such as evolutionary biology," said Suzuki. The technique he developed is already being used by a postdoctoral fellow in Buck’s laboratory to analyze recently recorded songs of humpback whales from Australia.

Jennifer Donovan | EurekAlert!
Further information:
http://www.hhmi.org/news/suzuki20060321.html
http://www.hhmi.org

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

A new dead zone in the Indian Ocean could impact future marine nutrient balance

06.12.2016 | Earth Sciences

Significantly more productivity in USP lasers

06.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>