Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists discover basic defect in cystic fibrosis airway glands


Scientists at Stanford University have determined that the buildup of sticky mucus found in cystic fibrosis is caused by a loss in the epithelial cell’s ability to secrete fluid. This research appears as the "Paper of the Week" in the March 17 issue of the Journal of Biological Chemistry, an American Society for Biochemistry and Molecular Biology journal.

Cystic fibrosis is the most common, fatal genetic disease in the United States. It causes the body to produce thick, sticky mucus that builds up in the lungs and blocks the airways. This makes it easy for bacteria to grow and leads to repeated serious lung infections. The thick, sticky mucus can also block tubes in the pancreas, preventing digestive enzymes from reaching the small intestine.

The disorder results from mutations in the gene for the cystic fibrosis transmembrane conductance regulator (CFTR), a membrane channel regulator essential for proper salt and water movement across some epithelia. Currently, there are two essentially opposite explanations for the inability of the body to clear mucus from the airways in cystic fibrosis. The first is that the defective CFTR is unable to aid in fluid secretion in cystic fibrosis airway glands. The second explanation is that the glands still secrete fluid via non-CFTR pathways, but the fluid is reabsorbed by other channels. In fact, it has been proposed that one of CFTR’s functions is to inhibit the activity of a channel called the epithelial Na+ channel (ENaC).

Nam Soo Joo and colleagues at Stanford University attempted to determine which hypothesis was correct by measuring the secretion from glands from patients with cystic fibrosis and from normal pigs. They added ENaC inhibitors to the glands to determine if the channel plays a role in mucus clearance. The researchers found no evidence that the inhibitors altered secretion rates in either normal or cystic fibrosis glands. This suggested that loss of CFTR-mediated fluid secretion is the culprit in cystic fibrosis.

"We previously showed that cystic fibrosis airway glands have defective gland secretion in response to certain drugs," explains Joo. "The results of our present study provide evidence that the defective cystic fibrosis gland secretion is not due to a potentially excessive fluid reabsorption pathway within glands but is due to most likely to a lack of fluid secretion from cystic fibrosis glands."

Nicole Kresge | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Molecular doorstop could be key to new tuberculosis drugs
20.03.2018 | Rockefeller University

nachricht Modified biomaterials self-assemble on temperature cues
20.03.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>