Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover basic defect in cystic fibrosis airway glands

20.03.2006


Scientists at Stanford University have determined that the buildup of sticky mucus found in cystic fibrosis is caused by a loss in the epithelial cell’s ability to secrete fluid. This research appears as the "Paper of the Week" in the March 17 issue of the Journal of Biological Chemistry, an American Society for Biochemistry and Molecular Biology journal.



Cystic fibrosis is the most common, fatal genetic disease in the United States. It causes the body to produce thick, sticky mucus that builds up in the lungs and blocks the airways. This makes it easy for bacteria to grow and leads to repeated serious lung infections. The thick, sticky mucus can also block tubes in the pancreas, preventing digestive enzymes from reaching the small intestine.

The disorder results from mutations in the gene for the cystic fibrosis transmembrane conductance regulator (CFTR), a membrane channel regulator essential for proper salt and water movement across some epithelia. Currently, there are two essentially opposite explanations for the inability of the body to clear mucus from the airways in cystic fibrosis. The first is that the defective CFTR is unable to aid in fluid secretion in cystic fibrosis airway glands. The second explanation is that the glands still secrete fluid via non-CFTR pathways, but the fluid is reabsorbed by other channels. In fact, it has been proposed that one of CFTR’s functions is to inhibit the activity of a channel called the epithelial Na+ channel (ENaC).


Nam Soo Joo and colleagues at Stanford University attempted to determine which hypothesis was correct by measuring the secretion from glands from patients with cystic fibrosis and from normal pigs. They added ENaC inhibitors to the glands to determine if the channel plays a role in mucus clearance. The researchers found no evidence that the inhibitors altered secretion rates in either normal or cystic fibrosis glands. This suggested that loss of CFTR-mediated fluid secretion is the culprit in cystic fibrosis.

"We previously showed that cystic fibrosis airway glands have defective gland secretion in response to certain drugs," explains Joo. "The results of our present study provide evidence that the defective cystic fibrosis gland secretion is not due to a potentially excessive fluid reabsorption pathway within glands but is due to most likely to a lack of fluid secretion from cystic fibrosis glands."

Nicole Kresge | EurekAlert!
Further information:
http://www.asbmb.org
http://www.jbc.org

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>