Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers simulate complete structure of virus -- on a computer

15.03.2006


An overall computer-simulated view of the satellite tobacco mosaic virus credit: University of Illinois/NCSA


When Boeing and Airbus developed their latest aircraft, the companies’ engineers designed and tested them on a computer long before the planes were built. Biologists are catching on. They’ve just completed the first computer simulation of an entire life form -- a virus.

In their quest to study life, biologists apply engineering knowledge somewhat differently: They "reverse engineer" life forms, test fly them in the computer, and see if they work in silico the way they do in vivo. This technique previously had been employed for small pieces of living cells, such as proteins, but not for an entire life form until now.

The accomplishment, performed by computational biologists at the University of Illinois at Urbana-Champaign and crystallographers at the University of California at Irvine, is detailed in the March issue of the journal Structure.



Deeper understanding of the mechanistic properties of viruses, the researchers say, could not only contribute to improvements in public health, but also in the creation of artificial nanomachines made of capsids -- a small protein shell that contains a viral building plan, a genome, in the form of DNA or RNA.

Viruses are incredibly tiny and extremely primitive life forms that cause myriad diseases. Biologists often refer to them as particles rather than organisms. Viruses hijack a biological cell and make it produce many new viruses from a single original. They’ve evolved elaborate mechanisms of cell infection, proliferation and departure from the host when it bursts from viral overcrowding.

For their first attempt to reverse engineer a life form in a computer program, computational biologists selected the satellite tobacco mosaic virus because of its simplicity and small size.

The satellite virus they chose is a spherical RNA sub-viral agent that is so small and simple that it can only proliferate in a cell already hijacked by a helper virus -- in this case the tobacco mosaic virus that is a serious threat to tomato plants.

A computer program was used to reverse engineer the dynamics of all atoms making up the virus and a small drop of salt water surrounding it. The virus and water contain more than a million atoms altogether.

The necessary calculation was done at Illinois on one of the world’s largest and fastest computers operated by the National Center for Supercomputing Applications. The computer simulations provided an unprecedented view into the dynamics of the virus.

"The simulations followed the life of the satellite tobacco mosaic virus, but only for a very brief time," said co-author Peter Freddolino, a doctoral student in biophysics and computational biology at Illinois. "Nevertheless, they elucidated the key physical properties of the viral particle as well as providing crucial information on its assembly."

It may take still a long time to simulate a dog wagging its tail in the computer, said co-author Klaus Schulten, Swanlund Professor of Physics at Illinois. "But a big first step has been taken to ’test fly’ living organisms," he said. "Naturally, this step will assist modern medicine as we continue to learn more about how viruses live."

The computer simulations were carried out in Schulten’s Theoretical and Biophysics Group’s lab at the Beckman Institute for Avanced Science and Technology.

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

Beyond the limits of conventional electronics: stable organic molecular nanowires

24.05.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>