Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers simulate complete structure of virus -- on a computer

15.03.2006


An overall computer-simulated view of the satellite tobacco mosaic virus credit: University of Illinois/NCSA


When Boeing and Airbus developed their latest aircraft, the companies’ engineers designed and tested them on a computer long before the planes were built. Biologists are catching on. They’ve just completed the first computer simulation of an entire life form -- a virus.

In their quest to study life, biologists apply engineering knowledge somewhat differently: They "reverse engineer" life forms, test fly them in the computer, and see if they work in silico the way they do in vivo. This technique previously had been employed for small pieces of living cells, such as proteins, but not for an entire life form until now.

The accomplishment, performed by computational biologists at the University of Illinois at Urbana-Champaign and crystallographers at the University of California at Irvine, is detailed in the March issue of the journal Structure.



Deeper understanding of the mechanistic properties of viruses, the researchers say, could not only contribute to improvements in public health, but also in the creation of artificial nanomachines made of capsids -- a small protein shell that contains a viral building plan, a genome, in the form of DNA or RNA.

Viruses are incredibly tiny and extremely primitive life forms that cause myriad diseases. Biologists often refer to them as particles rather than organisms. Viruses hijack a biological cell and make it produce many new viruses from a single original. They’ve evolved elaborate mechanisms of cell infection, proliferation and departure from the host when it bursts from viral overcrowding.

For their first attempt to reverse engineer a life form in a computer program, computational biologists selected the satellite tobacco mosaic virus because of its simplicity and small size.

The satellite virus they chose is a spherical RNA sub-viral agent that is so small and simple that it can only proliferate in a cell already hijacked by a helper virus -- in this case the tobacco mosaic virus that is a serious threat to tomato plants.

A computer program was used to reverse engineer the dynamics of all atoms making up the virus and a small drop of salt water surrounding it. The virus and water contain more than a million atoms altogether.

The necessary calculation was done at Illinois on one of the world’s largest and fastest computers operated by the National Center for Supercomputing Applications. The computer simulations provided an unprecedented view into the dynamics of the virus.

"The simulations followed the life of the satellite tobacco mosaic virus, but only for a very brief time," said co-author Peter Freddolino, a doctoral student in biophysics and computational biology at Illinois. "Nevertheless, they elucidated the key physical properties of the viral particle as well as providing crucial information on its assembly."

It may take still a long time to simulate a dog wagging its tail in the computer, said co-author Klaus Schulten, Swanlund Professor of Physics at Illinois. "But a big first step has been taken to ’test fly’ living organisms," he said. "Naturally, this step will assist modern medicine as we continue to learn more about how viruses live."

The computer simulations were carried out in Schulten’s Theoretical and Biophysics Group’s lab at the Beckman Institute for Avanced Science and Technology.

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>