Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Genetic network’ guards against lethal DNA damage

15.03.2006


Discovery in yeast opens door to new source of information on DNA damage, repair, and cancer



The discovery in yeast cells of a genetic network that guards against lethal DNA damage is a first step in the creation of a database of disease-causing combinations of mutated human genes, according to researchers at The Johns Hopkins University School of Medicine led by Jef. D. Boeke, Ph.D. In a report in the March 10 issue of Cell, the Hopkins team described a genetic network that is necessary for ensuring genomic stability in yeast. This study also identified previously unrecognized genes critical for maintaining DNA integrity and novel functions for well-known genes.

"A lot of human diseases are caused by multiple gene mutations that are difficult to identify," said Boeke, who is a professor of molecular biology and genetics and director of the High Throughput Biology Center at the Hopkins School of Medicine.


The yeast cell is an excellent model for this kind of study because 25 percent of human disease genes are also found in yeast, according to Boeke. Therefore, the discovery of this network of genes could help to identify mutations whose combined deleterious effects cause human diseases, including cancer and neurodegeneration, as well as aging.

"The interactions we discovered in yeast could also help researchers select the human versions of these genes suitable as targets for the development of new, more targeted and less toxic cancer therapies," Boeke said.

The goal of the Hopkins study was to identify pairs of genes that, while different, play redundant roles in governing genomic integrity in yeast cells, filling in for each other when one of the genes is mutated or deleted. Such redundancies ensure that each task in the network of biochemical reactions governing DNA stability is accomplished, Boeke noted.

Based on the data from this study, the investigators were able to separate the genes governing the stability of yeast DNA into 16 modules, or mini-pathways of genes, based on these genetic interactions, which are called synthetic fitness or lethality interactions. Synthetic lethality is a phenomenon in which two mutations that are not individually lethal cause cell death when combined. Specifically, the Hopkins team identified 4,956 interactions among 875 genes involved in DNA repair, DNA replication, the halting of replication and cell cycle progression by "checkpoints" so that damaged DNA can undergo repair, and responses to oxidative stress necessary for reducing the intracellular levels of highly reactive molecules that bind to and damage DNA.

The yeast has about 6,000 genes, of which about 1,000 are essential to survival and 5,000 are not, Boeke said. Specifically, 1,000 of the 5,000 non-essential genes are important enough so that the yeast grows slowly if any one of them is absent. And any of the 4,000 other genes can be deleted from the cell without interfering with the cell’s growth.

A major goal of the Hopkins team is to determine which of the non-essential genes interact with each other, said Boeke. All such pair-wise combinations of the 5,000 non-essential genes in the yeast genome would require about 25 million tests, he added. In the current study, 74 genes were tested in pair-wise combination with the 5,000 non-essential genes, a feat approximately equivalent to 370,000 gene-pair tests.

The Hopkins team used a technology known as dSLAM (heterozygote diploid-based synthetic lethality analyzed by microarray) to look at the effects of 5,000 different double mutations on cell fitness in a single experiment. With this technology, only 5,000 tests would be required to map the 25 million pair-wise combinations, greatly speeding the work.

The dSLAM strategy is somewhat like pulling out parts of a radio at random to see what happens, Boeke said.

"With yeast, as with a radio, you might rip out part A or part B and find that the radio still works; but if you pull out both parts and the radio dies you would learn that A and B can compensate for each other’s absence. The parts we’re pulling out of yeast are genes, and we look to see what happens when both of the genes are pulled out."

The dSLAM technology takes advantage of DNA barcode that identifies which genes a yeast cell is missing. This is much like using a commercial barcode in a store to quickly identify items at the checkout counter. The scanner in this case is a microarray: a grid of thousands of spots on a piece of glass that holds a unique "sensor" strand of DNA that matches one of the barcodes. Machines then read the microarray to identify which of the sensors found matching barcodes that identified specific yeast cells with specific mutations. If two genes that compensated for each other are knocked out, the yeast cell dies and the microarray doesn’t record that cell, Boeke noted. That means the two genes interact with each other, he said.

"This strategy for finding interacting genes will open the door to an extraordinarily rich source of new data on DNA damage, repair, and human diseases," Boeke added.

Eric Vohr | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>