Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Genetic network’ guards against lethal DNA damage

15.03.2006


Discovery in yeast opens door to new source of information on DNA damage, repair, and cancer



The discovery in yeast cells of a genetic network that guards against lethal DNA damage is a first step in the creation of a database of disease-causing combinations of mutated human genes, according to researchers at The Johns Hopkins University School of Medicine led by Jef. D. Boeke, Ph.D. In a report in the March 10 issue of Cell, the Hopkins team described a genetic network that is necessary for ensuring genomic stability in yeast. This study also identified previously unrecognized genes critical for maintaining DNA integrity and novel functions for well-known genes.

"A lot of human diseases are caused by multiple gene mutations that are difficult to identify," said Boeke, who is a professor of molecular biology and genetics and director of the High Throughput Biology Center at the Hopkins School of Medicine.


The yeast cell is an excellent model for this kind of study because 25 percent of human disease genes are also found in yeast, according to Boeke. Therefore, the discovery of this network of genes could help to identify mutations whose combined deleterious effects cause human diseases, including cancer and neurodegeneration, as well as aging.

"The interactions we discovered in yeast could also help researchers select the human versions of these genes suitable as targets for the development of new, more targeted and less toxic cancer therapies," Boeke said.

The goal of the Hopkins study was to identify pairs of genes that, while different, play redundant roles in governing genomic integrity in yeast cells, filling in for each other when one of the genes is mutated or deleted. Such redundancies ensure that each task in the network of biochemical reactions governing DNA stability is accomplished, Boeke noted.

Based on the data from this study, the investigators were able to separate the genes governing the stability of yeast DNA into 16 modules, or mini-pathways of genes, based on these genetic interactions, which are called synthetic fitness or lethality interactions. Synthetic lethality is a phenomenon in which two mutations that are not individually lethal cause cell death when combined. Specifically, the Hopkins team identified 4,956 interactions among 875 genes involved in DNA repair, DNA replication, the halting of replication and cell cycle progression by "checkpoints" so that damaged DNA can undergo repair, and responses to oxidative stress necessary for reducing the intracellular levels of highly reactive molecules that bind to and damage DNA.

The yeast has about 6,000 genes, of which about 1,000 are essential to survival and 5,000 are not, Boeke said. Specifically, 1,000 of the 5,000 non-essential genes are important enough so that the yeast grows slowly if any one of them is absent. And any of the 4,000 other genes can be deleted from the cell without interfering with the cell’s growth.

A major goal of the Hopkins team is to determine which of the non-essential genes interact with each other, said Boeke. All such pair-wise combinations of the 5,000 non-essential genes in the yeast genome would require about 25 million tests, he added. In the current study, 74 genes were tested in pair-wise combination with the 5,000 non-essential genes, a feat approximately equivalent to 370,000 gene-pair tests.

The Hopkins team used a technology known as dSLAM (heterozygote diploid-based synthetic lethality analyzed by microarray) to look at the effects of 5,000 different double mutations on cell fitness in a single experiment. With this technology, only 5,000 tests would be required to map the 25 million pair-wise combinations, greatly speeding the work.

The dSLAM strategy is somewhat like pulling out parts of a radio at random to see what happens, Boeke said.

"With yeast, as with a radio, you might rip out part A or part B and find that the radio still works; but if you pull out both parts and the radio dies you would learn that A and B can compensate for each other’s absence. The parts we’re pulling out of yeast are genes, and we look to see what happens when both of the genes are pulled out."

The dSLAM technology takes advantage of DNA barcode that identifies which genes a yeast cell is missing. This is much like using a commercial barcode in a store to quickly identify items at the checkout counter. The scanner in this case is a microarray: a grid of thousands of spots on a piece of glass that holds a unique "sensor" strand of DNA that matches one of the barcodes. Machines then read the microarray to identify which of the sensors found matching barcodes that identified specific yeast cells with specific mutations. If two genes that compensated for each other are knocked out, the yeast cell dies and the microarray doesn’t record that cell, Boeke noted. That means the two genes interact with each other, he said.

"This strategy for finding interacting genes will open the door to an extraordinarily rich source of new data on DNA damage, repair, and human diseases," Boeke added.

Eric Vohr | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>