Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New strategy developed to study disease: Reveals insights into cancer and treatment leads

09.03.2006


For the first time, Johns Hopkins researchers were able to easily jumpstart the activity of a well-known cancer protein in live cells with a small molecule, a strategy that pinpointed key players in the cancer process and can be used to determine new therapeutic targets. What’s more, the scientists’ study, published in the March 3 issue of Science, identifies a simple method to further understand the complex mechanisms that underlie cancer as well as other diseases and may provide an easy model to screen for new cancer drugs.



"Our study reveals a new way to study proteins in live cells, in this case, a tyrosine kinase implicated in causing cancer," says the study’s lead author, Philip A. Cole, M.D., Ph.D., director of the Department of Pharmacology and Molecular Sciences at The Johns Hopkins University School of Medicine. "This approach helped identify potentially important therapeutic targets and in the future may provide a method to easily screen cancer treatments."

In the study, Cole and his colleagues examined the tyrosine kinase Src (pronounced SARK), a clinically important cancer protein that scientists have heavily studied but do not completely understand. The Johns Hopkins researchers developed a special mutated version of the Src protein and incorporated it into live animal cells. The mutated version was inactive but contained an "ignition switch" that would turn it back on. They determined that the small molecule, imidazole, could act as the key. Imidazole fit into a pocket in the mutated structure of the Src protein, which mended the structure and reinstated Src’s activity. Removal of imidazole quickly shut the protein off again.


"This strategy provided a controlled environment to study Src," says Cole. "This helped us uncover some new and unexpected insights into how the cancer protein creates its havoc, as well as new treatment leads." For one, the model provided evidence that Src interacts with CrkL, a signaling protein not previously known to be targeted by Src’s actions. The study also found direct evidence that Src activates MAP kinase pathways, which help transfer information from growth factors, molecules that aid in the development of cancer cells. Previously the role of Src in these pathways was controversial.

"Understanding the functions of different proteins in normal states and disease states is crucial for treatment development because it can help identify new therapeutic targets," says Cole. Insights into tyrosine kinases could be particularly important for determining new cancer treatments, since scientists think that many different types are involved. "For example, Gleevec, which is used to treat gastrointestinal stromal tumors and chronic myeloid leukemia, is the most successful magic bullet against cancer in many years and works by blocking tyrosine kinase activity," Cole says.

As a next step, Cole and his colleagues plan to further examine the role of Src in cancer using their new model. They also plan to adapt the approach to develop a drug screen.

In the future, it also may be possible to use their chemical technique to mend mutated proteins found in people with certain genetic diseases, according to Cole. For example, the immune system disorder agammaglobulinemia involves mutated tyrosine kinases. Possibly researchers could identify a small molecule that rescues the activity of the mutated tyrosine kinases in the same way that imidazole corrected the structure of the mutated Src and jumpstarted its activity.

Eric Vohr | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>