Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New strategy developed to study disease: Reveals insights into cancer and treatment leads

09.03.2006


For the first time, Johns Hopkins researchers were able to easily jumpstart the activity of a well-known cancer protein in live cells with a small molecule, a strategy that pinpointed key players in the cancer process and can be used to determine new therapeutic targets. What’s more, the scientists’ study, published in the March 3 issue of Science, identifies a simple method to further understand the complex mechanisms that underlie cancer as well as other diseases and may provide an easy model to screen for new cancer drugs.



"Our study reveals a new way to study proteins in live cells, in this case, a tyrosine kinase implicated in causing cancer," says the study’s lead author, Philip A. Cole, M.D., Ph.D., director of the Department of Pharmacology and Molecular Sciences at The Johns Hopkins University School of Medicine. "This approach helped identify potentially important therapeutic targets and in the future may provide a method to easily screen cancer treatments."

In the study, Cole and his colleagues examined the tyrosine kinase Src (pronounced SARK), a clinically important cancer protein that scientists have heavily studied but do not completely understand. The Johns Hopkins researchers developed a special mutated version of the Src protein and incorporated it into live animal cells. The mutated version was inactive but contained an "ignition switch" that would turn it back on. They determined that the small molecule, imidazole, could act as the key. Imidazole fit into a pocket in the mutated structure of the Src protein, which mended the structure and reinstated Src’s activity. Removal of imidazole quickly shut the protein off again.


"This strategy provided a controlled environment to study Src," says Cole. "This helped us uncover some new and unexpected insights into how the cancer protein creates its havoc, as well as new treatment leads." For one, the model provided evidence that Src interacts with CrkL, a signaling protein not previously known to be targeted by Src’s actions. The study also found direct evidence that Src activates MAP kinase pathways, which help transfer information from growth factors, molecules that aid in the development of cancer cells. Previously the role of Src in these pathways was controversial.

"Understanding the functions of different proteins in normal states and disease states is crucial for treatment development because it can help identify new therapeutic targets," says Cole. Insights into tyrosine kinases could be particularly important for determining new cancer treatments, since scientists think that many different types are involved. "For example, Gleevec, which is used to treat gastrointestinal stromal tumors and chronic myeloid leukemia, is the most successful magic bullet against cancer in many years and works by blocking tyrosine kinase activity," Cole says.

As a next step, Cole and his colleagues plan to further examine the role of Src in cancer using their new model. They also plan to adapt the approach to develop a drug screen.

In the future, it also may be possible to use their chemical technique to mend mutated proteins found in people with certain genetic diseases, according to Cole. For example, the immune system disorder agammaglobulinemia involves mutated tyrosine kinases. Possibly researchers could identify a small molecule that rescues the activity of the mutated tyrosine kinases in the same way that imidazole corrected the structure of the mutated Src and jumpstarted its activity.

Eric Vohr | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>