Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mining the human genome for signs of recent selection

07.03.2006


By scanning the entire human genome in search of genetic variations that may signal recent evolution, University of Chicago researchers found more than 700 genetic variants that may be targets of recent natural positive selection during the past 10,000 years of human evolution.



In one of the first comprehensive genome scans for selection, the researchers found widespread evidence of evolution in all of the populations studied. Their results are published and freely available online in the open-access journal PLoS Biology.

The data analyzed here were collected by the International HapMap Project and consist of genetic data from 209 unrelated individuals who are grouped into three distinct populations: 89 East Asians, 60 Europeans and 60 Yorubans from Nigeria. The researchers found roughly the same number of signals of positive selection within each population. They also found that each population shares about one fifth of the signals with one or both of the other groups.


“This approach allows us to take a broad prospective to see what kinds of biological systems are undergoing adaptation,” said Jonathan Pritchard, professor of human genetics and corresponding author of the paper. “There have been a lot of recent changes—the advent of agriculture, shifts in diet, new habitats, climatic conditions—over the past 10,000 years, and we’re using these data to look for those signals of very recent adaptation.”

Among the more than 700 signals the team found were previously known sites of recent adaptation, such as the salt-sensitive hypertension gene and the lactase gene—the strongest signal in the genome hunt. The lactase mutation, which enables the digestion of milk to continue into adulthood, appeared in approximately 90 percent of Europeans.

“Presumably,” Pritchard said, “a few thousand years from now, if selection pressure remains the same, everyone will have [the selected mutation].”

Classifying all the genes by their biological functions, the researchers listed the top 16 categories that had the strongest signals, including olfaction (the sense of smell), reproduction-related processes and carbohydrate metabolism, which includes the lactase gene.

Other processes that show signals of selection include genes related to metabolism of foreign compounds, brain development and morphology. For example, the researchers found five genes involved in skin pigmentation that show evidence of positive selection in Europeans. “Only one of these five signals was known before,” Pritchard said. The authors also found signals of reproductive selection and sexual competition in all three populations.

“Many of the signals, however, seem to be more specific to modern human adaptation,” he said, “like skin pigmentation, which may respond to changes in habitat, or metabolism genes, like lactase, which may respond to changes in agriculture.”

The study was funded by the National Institutes of Health.

Paul Ocampo | alfa
Further information:
http://www.plosbiology.com

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>