Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer simulation and lab synthesis sift through vast universe of possible molecules for the best

03.03.2006


Duke University theoretical chemists are investigating a new computer method that could help scientists identify the best molecules for drugs, electronic devices or an array of other uses. Their method would address the "daunting" fact that "that there aren’t enough atoms in the universe to make all the reasonable-sized molecules that could be made," said Duke chemistry professor David Beratan.



In an article published in the Friday. Feb. 17, 2006 online issue of the Journal of the American Chemical Society (JACS), Beratan, fellow chemistry professor Weitao Yang and two post doctoral associates proposed a computer-assisted way to find novel and superior materials.

Their technique -- for which they are seeking a patent and recently received renewed federal exploratory funding -- focuses on a certain universal property of molecules. This property, called a "linear combination of atomic potentials" (LCAP), is applicable to all molecules.


LCAP, whose use in simulating and characterizing molecular behavior was pioneered by Yang’s research team at Duke, accounts for energy relationships between electrons and associated nuclei in the atoms making up all possible molecules.

The JACS article’s authors wrote that using LCAP would enable targeted searches for the best molecules exhibiting various key chemical or physical properties. Those searches would quickly sort through all the possible molecular building blocks assembled within a computer-calculated "space" containing the multitude of possible molecules, according to the researchers. The best, or "optimal," candidates for a given use would emerge through a computed process of accepting or rejecting various building block combinations.

The mathematics of this process can also be envisioned graphically as bringing order to a huge jumbled surface that represents the properties of all possible molecules, Beratan and Yang said. On the more-ordered landscape their calculations allow the best choices to extend above the rest, like the computer equivalent of the perfectly symmetrical Mt. Fuji.

"So for one such application, the ’peak’ might be the perfect drug from the standpoint of binding to a protein, Beratan explained. "Down in the ’basin’ would be other molecules that are average to poor from the standpoint of that application. And for each application there would be a different Mt. Fuji at a different location in this space," he said.

"The purposeful design of molecules with optimized properties is daunting because the number of accessible stable candidate molecules is immense," wrote Beratan, fellow chemistry professor Yang and research associates Mingliang Wang and Xiangqian Hu in the JACS paper.

"Each molecule is unique in structure and properties, and no set of continuous variables categorizes properties in the molecular space," their research paper said. "We introduce an approach that ’smooths out’ the chemical properties in the space of discrete target structures and thus facilitate property optimization."

In their JACS paper, the Duke researchers wrote that LCAP "continuously links all possible molecules." As a result, it could be used "as a scheme to build up libraries of chemical potential functions that can be ’snapped together’ to build the analytically exact electron-nuclear attraction potential for a whole molecule to put together from the chemical groups."

Beratan will also describe the work in a presentation at about 3:30 p.m. on Tuesday, March 28, 2006, in Room B304 of the Georgia World Congress Center during a national meeting of the American Chemical Society in Atlanta. That talk will be part of a symposium organized by Yang.

The research is supported by a Defense Advance Research Project Agency (DARPA) "grand challenge" initiative seeking radically new approaches to speed searches for the most favorable chemical compounds, Beratan and Yang said.

Initial Phase I funding by the Defense Advanced Research Projects Agency (DARPA) enabled the researchers to demonstrate the technique’s feasibility. Phase II funding, to begin in March 2006, will support further exploratory computational work as well as laboratory syntheses to verify theory. If successful, those pilot efforts could lead to new kinds of devices that use light and electricity for telecommunications, they said.

Candidate top molecules that Beratan’s and Yang’s theoretical group identifies through simulation will be synthesized in the laboratory of collaborators at the University of Pennsylvania. Investigators at the University of Leuven in Belgium will then evaluate those materials’ characteristics.

According to Beratan, present-day "rational" discovery processes that identify new molecules by making small structural changes to previous ones can get "lost" in the huge space of molecular possibilities.

"For instance, all the current molecules related to aspirin may be in one place, while all the Tylenol-like molecules are in a separate cluster," he said. "Meanwhile, maybe the best possible drug of that type may be undiscovered somewhere else with a chemistry that’s quantitatively different from known molecules.

"If we just make small chemical modifications to known themes, we’ll never discover that molecule."

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>