Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer simulation and lab synthesis sift through vast universe of possible molecules for the best

03.03.2006


Duke University theoretical chemists are investigating a new computer method that could help scientists identify the best molecules for drugs, electronic devices or an array of other uses. Their method would address the "daunting" fact that "that there aren’t enough atoms in the universe to make all the reasonable-sized molecules that could be made," said Duke chemistry professor David Beratan.



In an article published in the Friday. Feb. 17, 2006 online issue of the Journal of the American Chemical Society (JACS), Beratan, fellow chemistry professor Weitao Yang and two post doctoral associates proposed a computer-assisted way to find novel and superior materials.

Their technique -- for which they are seeking a patent and recently received renewed federal exploratory funding -- focuses on a certain universal property of molecules. This property, called a "linear combination of atomic potentials" (LCAP), is applicable to all molecules.


LCAP, whose use in simulating and characterizing molecular behavior was pioneered by Yang’s research team at Duke, accounts for energy relationships between electrons and associated nuclei in the atoms making up all possible molecules.

The JACS article’s authors wrote that using LCAP would enable targeted searches for the best molecules exhibiting various key chemical or physical properties. Those searches would quickly sort through all the possible molecular building blocks assembled within a computer-calculated "space" containing the multitude of possible molecules, according to the researchers. The best, or "optimal," candidates for a given use would emerge through a computed process of accepting or rejecting various building block combinations.

The mathematics of this process can also be envisioned graphically as bringing order to a huge jumbled surface that represents the properties of all possible molecules, Beratan and Yang said. On the more-ordered landscape their calculations allow the best choices to extend above the rest, like the computer equivalent of the perfectly symmetrical Mt. Fuji.

"So for one such application, the ’peak’ might be the perfect drug from the standpoint of binding to a protein, Beratan explained. "Down in the ’basin’ would be other molecules that are average to poor from the standpoint of that application. And for each application there would be a different Mt. Fuji at a different location in this space," he said.

"The purposeful design of molecules with optimized properties is daunting because the number of accessible stable candidate molecules is immense," wrote Beratan, fellow chemistry professor Yang and research associates Mingliang Wang and Xiangqian Hu in the JACS paper.

"Each molecule is unique in structure and properties, and no set of continuous variables categorizes properties in the molecular space," their research paper said. "We introduce an approach that ’smooths out’ the chemical properties in the space of discrete target structures and thus facilitate property optimization."

In their JACS paper, the Duke researchers wrote that LCAP "continuously links all possible molecules." As a result, it could be used "as a scheme to build up libraries of chemical potential functions that can be ’snapped together’ to build the analytically exact electron-nuclear attraction potential for a whole molecule to put together from the chemical groups."

Beratan will also describe the work in a presentation at about 3:30 p.m. on Tuesday, March 28, 2006, in Room B304 of the Georgia World Congress Center during a national meeting of the American Chemical Society in Atlanta. That talk will be part of a symposium organized by Yang.

The research is supported by a Defense Advance Research Project Agency (DARPA) "grand challenge" initiative seeking radically new approaches to speed searches for the most favorable chemical compounds, Beratan and Yang said.

Initial Phase I funding by the Defense Advanced Research Projects Agency (DARPA) enabled the researchers to demonstrate the technique’s feasibility. Phase II funding, to begin in March 2006, will support further exploratory computational work as well as laboratory syntheses to verify theory. If successful, those pilot efforts could lead to new kinds of devices that use light and electricity for telecommunications, they said.

Candidate top molecules that Beratan’s and Yang’s theoretical group identifies through simulation will be synthesized in the laboratory of collaborators at the University of Pennsylvania. Investigators at the University of Leuven in Belgium will then evaluate those materials’ characteristics.

According to Beratan, present-day "rational" discovery processes that identify new molecules by making small structural changes to previous ones can get "lost" in the huge space of molecular possibilities.

"For instance, all the current molecules related to aspirin may be in one place, while all the Tylenol-like molecules are in a separate cluster," he said. "Meanwhile, maybe the best possible drug of that type may be undiscovered somewhere else with a chemistry that’s quantitatively different from known molecules.

"If we just make small chemical modifications to known themes, we’ll never discover that molecule."

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>