Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experimental drug reverses key cognitive deficits, pathology in Alzheimer’s

02.03.2006


A new drug that enhances the activity of a key brain cell receptor involved in Alzheimer’s disease (AD) reverses learning and memory deficits in mice engineered to have pathological hallmarks of the disease. What’s more, the drug, called AF267B, reduces both of the pathologies--the brain-clogging buildup of protein "amyloid plaque" outside brain cells and the protein "neurofibrillary tangles" inside the cells.



In an article in the March 2, 2006, issue of Neuron, Dr. Frank LaFerla of the University of California, Irvine and his colleagues reported the first in vivo studies of the drug’s effects. AF267B was developed by coauthor Abraham Fisher to activate particular receptors for the neurotransmitter acetylcholine. These specific receptors, called M1 receptors, are abundant in areas of the brain--the cortex and hippocampus--known to develop severe deposits of plaques and tangles in AD patients. Dysfunction in acetylcholine receptors has been shown to be characteristic of early stages of AD.

Receptors are proteins on the neuronal surface that are triggered by the chemical signals called neurotransmitters. This triggering initiates such cellular responses as the wave of electrical excitation of a nerve impulse.


As an animal model of AD, the researchers used a "triple knockout" mouse in which three key genes involved in normal brain protein processing pathways had been knocked out, creating both amyloid plaques and neurofibrillary tangles.

In their experiments, the researchers gave the knockout mice eight weeks of daily doses of AF267B and tested the animals’ learning and memory abilities. One test involved measuring how well the treated animals could learn to find a submerged platform in a tank of murky water. This test is known to depend on the function of the hippocampus. The researchers found that the treated mice performed significantly better than untreated knockout mice on the task.

Significantly, found the researchers, the poorer performance of the untreated mice resulted from their relative inability to remember from day-to-day the location of the platform.

In another memory test, however, the treated mice did not show improved performance compared to untreated mice. In this test--which depends on the function of another Alzheimer’s-affected brain region called the amygdala--the mice were required to learn to associate a dark chamber with an unpleasant shock.

Analyzing the brain tissue of the untreated and treated mice, the researchers found that treatment with AF267B reduced levels of both pathological plaques and tangles in the cortex and hippocampus, but not in the amygdala.

In experiments that demonstrated the central role of M1 receptors in AD-like pathology, the researchers also tested the effects on the mice of another drug, dicyclomine, that blocks M1 receptors. They found that both normal and knockout mice treated with the drug showed the characteristic learning and memory impairments, as well as amyloid and tangle pathologies.

The researchers also studied the effects of AF267B treatment on key enzymes involved in amyloid protein processing in the cell. They found evidence that the drug appears to work by affecting levels of these enzymes, as a result of its enhancement of M1 receptor activity.

The researchers concluded that "the results of the present study show the remarkable therapeutic potential of AF267B in attenuating the major hallmark neuropathological lesions relevant to AD and in restoring cognitive function, at least for certain tasks." They also pointed out the importance of the finding that administering dicyclomine to block M1 receptors exacerbated the disease pathologies.

"Further work, including clinical trials in humans, will be necessary to determine if this new generation of M1 agonists will produce a similar therapeutic efficacy as was observed in the [knockout] mice," they concluded.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com
http://www.neuron.org

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>