Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experimental drug reverses key cognitive deficits, pathology in Alzheimer’s

02.03.2006


A new drug that enhances the activity of a key brain cell receptor involved in Alzheimer’s disease (AD) reverses learning and memory deficits in mice engineered to have pathological hallmarks of the disease. What’s more, the drug, called AF267B, reduces both of the pathologies--the brain-clogging buildup of protein "amyloid plaque" outside brain cells and the protein "neurofibrillary tangles" inside the cells.



In an article in the March 2, 2006, issue of Neuron, Dr. Frank LaFerla of the University of California, Irvine and his colleagues reported the first in vivo studies of the drug’s effects. AF267B was developed by coauthor Abraham Fisher to activate particular receptors for the neurotransmitter acetylcholine. These specific receptors, called M1 receptors, are abundant in areas of the brain--the cortex and hippocampus--known to develop severe deposits of plaques and tangles in AD patients. Dysfunction in acetylcholine receptors has been shown to be characteristic of early stages of AD.

Receptors are proteins on the neuronal surface that are triggered by the chemical signals called neurotransmitters. This triggering initiates such cellular responses as the wave of electrical excitation of a nerve impulse.


As an animal model of AD, the researchers used a "triple knockout" mouse in which three key genes involved in normal brain protein processing pathways had been knocked out, creating both amyloid plaques and neurofibrillary tangles.

In their experiments, the researchers gave the knockout mice eight weeks of daily doses of AF267B and tested the animals’ learning and memory abilities. One test involved measuring how well the treated animals could learn to find a submerged platform in a tank of murky water. This test is known to depend on the function of the hippocampus. The researchers found that the treated mice performed significantly better than untreated knockout mice on the task.

Significantly, found the researchers, the poorer performance of the untreated mice resulted from their relative inability to remember from day-to-day the location of the platform.

In another memory test, however, the treated mice did not show improved performance compared to untreated mice. In this test--which depends on the function of another Alzheimer’s-affected brain region called the amygdala--the mice were required to learn to associate a dark chamber with an unpleasant shock.

Analyzing the brain tissue of the untreated and treated mice, the researchers found that treatment with AF267B reduced levels of both pathological plaques and tangles in the cortex and hippocampus, but not in the amygdala.

In experiments that demonstrated the central role of M1 receptors in AD-like pathology, the researchers also tested the effects on the mice of another drug, dicyclomine, that blocks M1 receptors. They found that both normal and knockout mice treated with the drug showed the characteristic learning and memory impairments, as well as amyloid and tangle pathologies.

The researchers also studied the effects of AF267B treatment on key enzymes involved in amyloid protein processing in the cell. They found evidence that the drug appears to work by affecting levels of these enzymes, as a result of its enhancement of M1 receptor activity.

The researchers concluded that "the results of the present study show the remarkable therapeutic potential of AF267B in attenuating the major hallmark neuropathological lesions relevant to AD and in restoring cognitive function, at least for certain tasks." They also pointed out the importance of the finding that administering dicyclomine to block M1 receptors exacerbated the disease pathologies.

"Further work, including clinical trials in humans, will be necessary to determine if this new generation of M1 agonists will produce a similar therapeutic efficacy as was observed in the [knockout] mice," they concluded.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com
http://www.neuron.org

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>