Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A case of mistaken molecular identity

27.02.2006


Researchers in Argentina have determined that night blindness is a new clinical symptom of Chagas disease. A team led by Howard Hughes Medical Institute (HHMI) international research scholar Mariano Jorge Levin and Cristina Paveto of the Institute for Genetic Engineering and Molecular Biology (INGEBI), National Research Council, National Council of Scientific Research and Technology in Buenos Aires, found that the immune system of individuals with the tropical disease can shut down a key reaction in the retina, causing night blindness.



"This is a new observation, a new clinical symptom of Chagas disease," said Levin, head of the Laboratory of the Molecular Biology of Chagas Disease at the University of Buenos Aires, Argentina. Levin and colleagues report their findings in the March 2006, issue of the FASEB Journal.

Chagas disease affects people living in regions of Latin America where insects carrying the parasite Trypanosoma cruzi thrive in crowded and substandard housing. At night, the insects emerge and bite, transferring the Chagas parasite into a new host. Their victims are often children. After an acute infection characterized by swollen eyelids, those infected usually feel better. But the parasite remains active inside them, in a chronic phase of infection, quietly invading cells and stimulating the immune system. As a result, people can develop heart and gastrointestinal problems months or years after being infected. Some 30,000 people die each year from Chagas disease, according to the World Health Organization, but the number of people who are carrying latent infections is unknown.


"We now know that Chagas patients may have trouble seeing at night," said Levin. "And this gives us additional motivation to improve conditions for people living in areas where Chagas disease is common."

Silvia Matsumoto, a physician from the Dr. Teodoro Alvarez Hospital in Buenos Aires and first author of the paper, launched the investigation after noticing Chagas patients complaining about vision problems. "This was her idea, that the same antibodies that touch the heart cells might also block rhodopsin," said Levin.

Matsumoto conducted thorough eye examinations of 45 Chagas disease patients with heart problems. She found that under bright conditions, the Chagas patients performed comparably to 50 healthy control individuals. But in the dark, 37 of 45 (82 percent) Chagas patients had trouble seeing with at least one eye, and 19 of 45 (42 percent) had trouble with both eyes. Matsumoto then approached Paveto, and both contacted Levin, whose laboratory was well-stocked with antibodies from Chagas patients and who had already developed the tests needed to study molecular mimicry.

In previous research, Levin and colleagues showed that the immune systems of patients infected by T. cruzi generate antibodies that attack the parasite but also cause damage to heart cells. Levin suspected "molecular mimicry" as the cause of the misguided attack. Molecular mimicry occurs when a molecule that is part of an infectious agent resembles a molecule native to the body. Eventually, the immune system begins to mistake the native molecule for the invader. Levin’s investigations revealed that an intra-cellular T. cruzi protein resembles the beta1-adrenergic receptor on the surface of heart cells, a finding that helped explain why Chagas patients develop certain heart problems.

Now, it turns out, molecular mimicry can also upset the delicate machinery inside retinal cells. Levin and his team found that antibodies geared to attack T. cruzi also block rhodopsin, a molecule that converts light into electrical impulses sent to the brain. "Rhodopsin takes light and transforms it – that’s its function," said Levin.

To demonstrate molecular mimicry in the retina, Paveto extracted rhodopsin from cow’s eyes. Through a series of tests, the team showed that cow rhodopsin, which is similar to the human protein, reacts with antibodies produced by Chagas patients.

"We showed that the same antibodies that attack heart cells can also interfere with rhodopsin," Levin said. "This is important, because it enlarges the concept of molecular mimicry in Chagas disease." Rhodopsin and beta1-adrenergic receptors in heart cells belong to the same class of molecules, a subfamily of the G-protein-coupled receptors, he pointed out.

Paveto, an independent researcher at INGEBI--an institute that is home to three HHMI international research scholars--conducted much of the painstaking work on the project by developing an original method to test rhodopsin function, said Levin.

Levin said that Chagas patients’ vision problems are caused exclusively by the antibodies that block rhodopsin, and not by inflammation. "In the hearts of Chagas patients, we see scarring because there is a complex reaction that causes inflammation," he said. "But there are no such scars in the eyes of Chagas patients with reduced vision."

"No one knew about the night blindness, so we don’t know, for instance, if Chagas patients have more accidents at night," Levin added. "That’s one of many ideas to explore now. The research also points out that we need new drugs or vaccines to stop the parasite, and at a social level, it stresses the need to improve living conditions of Chagas patients, particularly those living in rural areas."

Jennifer Donovan | EurekAlert!
Further information:
http://www.hhmi.org

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>