Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A case of mistaken molecular identity


Researchers in Argentina have determined that night blindness is a new clinical symptom of Chagas disease. A team led by Howard Hughes Medical Institute (HHMI) international research scholar Mariano Jorge Levin and Cristina Paveto of the Institute for Genetic Engineering and Molecular Biology (INGEBI), National Research Council, National Council of Scientific Research and Technology in Buenos Aires, found that the immune system of individuals with the tropical disease can shut down a key reaction in the retina, causing night blindness.

"This is a new observation, a new clinical symptom of Chagas disease," said Levin, head of the Laboratory of the Molecular Biology of Chagas Disease at the University of Buenos Aires, Argentina. Levin and colleagues report their findings in the March 2006, issue of the FASEB Journal.

Chagas disease affects people living in regions of Latin America where insects carrying the parasite Trypanosoma cruzi thrive in crowded and substandard housing. At night, the insects emerge and bite, transferring the Chagas parasite into a new host. Their victims are often children. After an acute infection characterized by swollen eyelids, those infected usually feel better. But the parasite remains active inside them, in a chronic phase of infection, quietly invading cells and stimulating the immune system. As a result, people can develop heart and gastrointestinal problems months or years after being infected. Some 30,000 people die each year from Chagas disease, according to the World Health Organization, but the number of people who are carrying latent infections is unknown.

"We now know that Chagas patients may have trouble seeing at night," said Levin. "And this gives us additional motivation to improve conditions for people living in areas where Chagas disease is common."

Silvia Matsumoto, a physician from the Dr. Teodoro Alvarez Hospital in Buenos Aires and first author of the paper, launched the investigation after noticing Chagas patients complaining about vision problems. "This was her idea, that the same antibodies that touch the heart cells might also block rhodopsin," said Levin.

Matsumoto conducted thorough eye examinations of 45 Chagas disease patients with heart problems. She found that under bright conditions, the Chagas patients performed comparably to 50 healthy control individuals. But in the dark, 37 of 45 (82 percent) Chagas patients had trouble seeing with at least one eye, and 19 of 45 (42 percent) had trouble with both eyes. Matsumoto then approached Paveto, and both contacted Levin, whose laboratory was well-stocked with antibodies from Chagas patients and who had already developed the tests needed to study molecular mimicry.

In previous research, Levin and colleagues showed that the immune systems of patients infected by T. cruzi generate antibodies that attack the parasite but also cause damage to heart cells. Levin suspected "molecular mimicry" as the cause of the misguided attack. Molecular mimicry occurs when a molecule that is part of an infectious agent resembles a molecule native to the body. Eventually, the immune system begins to mistake the native molecule for the invader. Levin’s investigations revealed that an intra-cellular T. cruzi protein resembles the beta1-adrenergic receptor on the surface of heart cells, a finding that helped explain why Chagas patients develop certain heart problems.

Now, it turns out, molecular mimicry can also upset the delicate machinery inside retinal cells. Levin and his team found that antibodies geared to attack T. cruzi also block rhodopsin, a molecule that converts light into electrical impulses sent to the brain. "Rhodopsin takes light and transforms it – that’s its function," said Levin.

To demonstrate molecular mimicry in the retina, Paveto extracted rhodopsin from cow’s eyes. Through a series of tests, the team showed that cow rhodopsin, which is similar to the human protein, reacts with antibodies produced by Chagas patients.

"We showed that the same antibodies that attack heart cells can also interfere with rhodopsin," Levin said. "This is important, because it enlarges the concept of molecular mimicry in Chagas disease." Rhodopsin and beta1-adrenergic receptors in heart cells belong to the same class of molecules, a subfamily of the G-protein-coupled receptors, he pointed out.

Paveto, an independent researcher at INGEBI--an institute that is home to three HHMI international research scholars--conducted much of the painstaking work on the project by developing an original method to test rhodopsin function, said Levin.

Levin said that Chagas patients’ vision problems are caused exclusively by the antibodies that block rhodopsin, and not by inflammation. "In the hearts of Chagas patients, we see scarring because there is a complex reaction that causes inflammation," he said. "But there are no such scars in the eyes of Chagas patients with reduced vision."

"No one knew about the night blindness, so we don’t know, for instance, if Chagas patients have more accidents at night," Levin added. "That’s one of many ideas to explore now. The research also points out that we need new drugs or vaccines to stop the parasite, and at a social level, it stresses the need to improve living conditions of Chagas patients, particularly those living in rural areas."

Jennifer Donovan | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>