Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wisconsin scientists find a way to make human collagen in the lab

15.02.2006


Of all of the materials that make up our bodies, nothing is more ubiquitous than collagen.



It is the most important structural protein in the body, reinforcing connective tissue, bones and teeth, and forming long, fibrous cables to strengthen tendons. Collagen forms sheets of tissue that support the skin and every internal organ. There is nothing in the body, in fact, that does not depend in some way on collagen.

In medicine, collagen from animals, principally cows, is used to rebuild tissue destroyed by burns and wounds. Commonly, it is employed in plastic surgery to augment the lips and cheeks of starlets and others seeking perpetual youth. Catgut, the biodegradable sutures made from cow or horse intestines and used in surgery to minimize scarring, is also a form of collagen.


But for such a commonplace and useful protein, collagen has defied the efforts of biomedical researchers who have tried mightily to synthesize it for use in applications ranging from new wound-healing technologies to alleviating arthritis. The reason: Scientists were unable to synthesize the human protein because they had no way to link the easily made short snippets of collagen into the long, fibrous molecules necessary to mimic the real thing.

But now a team of scientists from the University of Wisconsin-Madison, writing this week (Feb. 13, 2006) in the Proceedings of the National Academy of Sciences (PNAS), reports the discovery of a method for making human collagen in the lab.

The work is important because it opens a door to producing a material that can have broad use in medicine and replace the animal products that are now used but that can also harbor pathogens or spark undesirable immune responses. What’s more, the new work may also lay the foundation for applications in nanotechnology -- such as microscopic sensors that could be implanted in humans to confront the effects of disease -- because it gives scientists a way to precisely manipulate the lengthy molecules and add elements to collagen that confer new abilities.

"We can make collagen that duplicates nature exactly, but we can diverge from that when it is desirable," says Ronald T. Raines, a UW-Madison professor of biochemistry who, with postdoctoral fellow Frank W. Kotch, authored the new PNAS study.

Scientists have been seeking a way to make synthetic collagen for at least 30 years. In clinical settings, human collagen would be preferred over bovine collagen because the material now gleaned from cows can prompt an unwanted immune response in patients and it can harbor animal pathogens that might infect humans.

The Wisconsin team discovered a way to make the long, slender collagen molecules, in essence, by having the protein assemble itself. What was required, Raines explains, was a way to give the collagen snippets that scientists could easily make a way to "self assemble" into the long, thin fibers of native collagen. The Wisconsin team was able to modify the ends of the snippets so they could fit together and stick to form long collagen fibers.

"Now we can make synthetic collagen that’s longer than natural collagen," says Raines, who previously authored a paper in the journal Nature that demonstrated how to make synthetic collagen that is stronger than natural collagen. "We just don’t have to take what nature gives us. We can make it longer and stronger."

In medicine, synthetic human collagen could be used as "solder" to speed healing of large wounds. In the context of nanotechnology, collagen has appeal as a type of nanowire because it is thin -- thinner even than the vaunted carbon nanotubes hailed by nanotechnologists -- and long.

Coated with gold or silver, human collagen could form the basis of implantable electric sensors. By attaching certain biological molecules to the wire, it would be possible to create sensors that might, for example, quickly alert a diabetic to falling insulin levels. Similarly, equipped with molecules to recognize specific pathogens, such a sensor could stand perpetual guard in the body and provide instant warning of invading viruses or bacteria.

"We can have total control of what goes on these very thin extended fibers," says Raines. "We are able to build these molecules up one atom at a time and we can manipulate them in very precise ways."

The new Wisconsin study, which was supported by grants from the National Institutes of Health, lays a foundation for bringing human collagen to the clinic, says Raines. But he notes there is still some work to be done to perfect the technology.

For example, while the new work enables the researchers to make collagen molecules that are long and strong, ways to precisely control the self-assembly of collagen to molecules of a specified size remain to be worked out, according to Raines.

Ronald Raines | EurekAlert!
Further information:
http://www.biochem.wisc.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>