Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Findings advance use of adult stem cells for replacement bone

15.02.2006


Undergraduate is lead author of study in top national journal



In a significant advance for regenerative medicine, researchers at Rice University have discovered a new way to culture adult stem cells from bone marrow such that the cells themselves produce a growth matrix that is rich in important biochemical growth factors.
The research, which appears online this week in the Proceedings of the National Academy of Sciences, is notable not just because of the science – researchers found they could coax bone cells into produce up to 75 times more calcium – but also because the study was conducted by an undergraduate bioengineering senior, Néha Datta.

"These results are important, not just because they hold great promise for regenerating healthy bone but also because they may be applicable to other tissues," said researcher Antonios Mikos, the John W. Cox Professor of Bioengineering and Director of Rice’s Center for Excellence in Tissue Engineering. "This is also a notable personal achievement for Néha, because PNAS is one of the top scientific journals in the country and because this is the third peer-reviewed paper – and the second first-authored paper -- that she’s produced in the past year."



Tissue engineering, also known as regenerative medicine, involves harvesting stem cells from a patient’s body and using them to grow new tissues that can be transplanted back into the patient without risk of rejection. Most tissue engineering approaches involve three components: the harvested adult stem cells, growth factors that cause the stem cells to differentiate into the right kind of tissue cells – like skin or bone – and a porous scaffold, or template, that allows the tissue to grow into the correct shape.

"Finding the right combination of growth factors is always a challenge," Mikos said. "It’s not unusual for adult stem cells to progress through a half-dozen or more stages of differentiation on their way to becoming the right tissue – and any missed cue will derail the process. In most cases, engineers have little choice but to take a trial-and-error approach to designing a growth-factor regime."

In the study, Mikos’s team hit upon the idea of having the stem cells create the proper growth medium themselves. The group, which included graduate student Quynh Pham and postdoctoral research associate Upma Sharma, accomplished this by seeding discs of titanium mesh with stem cells and encouraging them to form extracellular matrix, or ECM, the boney, calcified deposit that gives bone its structural strength.

A comparison was then run on these pre-generated ECM constructs and on non-treated titanium scaffolds. The pre-treated surfaces encouraged calcification at a much faster rate. The researchers also found up to 75 times more calcium in the bone created by tissues in the pre-treated cultures.

"To me, the most important element of the research is that it may one day contribute to new treatment options for patients," said Datta, who is planning to enter medical school in the fall. "One of the reasons I want to become a surgeon is so I can help bring cutting-edge work from the laboratory into clinical practice."

Datta said one of the main reasons she chose to attend Rice was because of the tremendous opportunities available through Rice’s Century Scholars Program. The program included funding for tuition as well as a chance to begin research in Mikos’s lab during her freshman year.

"My research experience at Rice has been life-changing in ways I could never have imagined four years ago," Datta said. "I never anticipated I would be traveling to international conferences, for example, but from the very beginning Dr. Mikos treated me as a valuable member of his research team. He provided encouragement. He let me follow my ideas. In short, he is the perfect mentor."

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>