Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Findings advance use of adult stem cells for replacement bone

15.02.2006


Undergraduate is lead author of study in top national journal



In a significant advance for regenerative medicine, researchers at Rice University have discovered a new way to culture adult stem cells from bone marrow such that the cells themselves produce a growth matrix that is rich in important biochemical growth factors.
The research, which appears online this week in the Proceedings of the National Academy of Sciences, is notable not just because of the science – researchers found they could coax bone cells into produce up to 75 times more calcium – but also because the study was conducted by an undergraduate bioengineering senior, Néha Datta.

"These results are important, not just because they hold great promise for regenerating healthy bone but also because they may be applicable to other tissues," said researcher Antonios Mikos, the John W. Cox Professor of Bioengineering and Director of Rice’s Center for Excellence in Tissue Engineering. "This is also a notable personal achievement for Néha, because PNAS is one of the top scientific journals in the country and because this is the third peer-reviewed paper – and the second first-authored paper -- that she’s produced in the past year."



Tissue engineering, also known as regenerative medicine, involves harvesting stem cells from a patient’s body and using them to grow new tissues that can be transplanted back into the patient without risk of rejection. Most tissue engineering approaches involve three components: the harvested adult stem cells, growth factors that cause the stem cells to differentiate into the right kind of tissue cells – like skin or bone – and a porous scaffold, or template, that allows the tissue to grow into the correct shape.

"Finding the right combination of growth factors is always a challenge," Mikos said. "It’s not unusual for adult stem cells to progress through a half-dozen or more stages of differentiation on their way to becoming the right tissue – and any missed cue will derail the process. In most cases, engineers have little choice but to take a trial-and-error approach to designing a growth-factor regime."

In the study, Mikos’s team hit upon the idea of having the stem cells create the proper growth medium themselves. The group, which included graduate student Quynh Pham and postdoctoral research associate Upma Sharma, accomplished this by seeding discs of titanium mesh with stem cells and encouraging them to form extracellular matrix, or ECM, the boney, calcified deposit that gives bone its structural strength.

A comparison was then run on these pre-generated ECM constructs and on non-treated titanium scaffolds. The pre-treated surfaces encouraged calcification at a much faster rate. The researchers also found up to 75 times more calcium in the bone created by tissues in the pre-treated cultures.

"To me, the most important element of the research is that it may one day contribute to new treatment options for patients," said Datta, who is planning to enter medical school in the fall. "One of the reasons I want to become a surgeon is so I can help bring cutting-edge work from the laboratory into clinical practice."

Datta said one of the main reasons she chose to attend Rice was because of the tremendous opportunities available through Rice’s Century Scholars Program. The program included funding for tuition as well as a chance to begin research in Mikos’s lab during her freshman year.

"My research experience at Rice has been life-changing in ways I could never have imagined four years ago," Datta said. "I never anticipated I would be traveling to international conferences, for example, but from the very beginning Dr. Mikos treated me as a valuable member of his research team. He provided encouragement. He let me follow my ideas. In short, he is the perfect mentor."

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Life Sciences:

nachricht New technique unveils 'matrix' inside tissues and tumors
29.06.2017 | University of Copenhagen The Faculty of Health and Medical Sciences

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>