Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Findings advance use of adult stem cells for replacement bone

15.02.2006


Undergraduate is lead author of study in top national journal



In a significant advance for regenerative medicine, researchers at Rice University have discovered a new way to culture adult stem cells from bone marrow such that the cells themselves produce a growth matrix that is rich in important biochemical growth factors.
The research, which appears online this week in the Proceedings of the National Academy of Sciences, is notable not just because of the science – researchers found they could coax bone cells into produce up to 75 times more calcium – but also because the study was conducted by an undergraduate bioengineering senior, Néha Datta.

"These results are important, not just because they hold great promise for regenerating healthy bone but also because they may be applicable to other tissues," said researcher Antonios Mikos, the John W. Cox Professor of Bioengineering and Director of Rice’s Center for Excellence in Tissue Engineering. "This is also a notable personal achievement for Néha, because PNAS is one of the top scientific journals in the country and because this is the third peer-reviewed paper – and the second first-authored paper -- that she’s produced in the past year."



Tissue engineering, also known as regenerative medicine, involves harvesting stem cells from a patient’s body and using them to grow new tissues that can be transplanted back into the patient without risk of rejection. Most tissue engineering approaches involve three components: the harvested adult stem cells, growth factors that cause the stem cells to differentiate into the right kind of tissue cells – like skin or bone – and a porous scaffold, or template, that allows the tissue to grow into the correct shape.

"Finding the right combination of growth factors is always a challenge," Mikos said. "It’s not unusual for adult stem cells to progress through a half-dozen or more stages of differentiation on their way to becoming the right tissue – and any missed cue will derail the process. In most cases, engineers have little choice but to take a trial-and-error approach to designing a growth-factor regime."

In the study, Mikos’s team hit upon the idea of having the stem cells create the proper growth medium themselves. The group, which included graduate student Quynh Pham and postdoctoral research associate Upma Sharma, accomplished this by seeding discs of titanium mesh with stem cells and encouraging them to form extracellular matrix, or ECM, the boney, calcified deposit that gives bone its structural strength.

A comparison was then run on these pre-generated ECM constructs and on non-treated titanium scaffolds. The pre-treated surfaces encouraged calcification at a much faster rate. The researchers also found up to 75 times more calcium in the bone created by tissues in the pre-treated cultures.

"To me, the most important element of the research is that it may one day contribute to new treatment options for patients," said Datta, who is planning to enter medical school in the fall. "One of the reasons I want to become a surgeon is so I can help bring cutting-edge work from the laboratory into clinical practice."

Datta said one of the main reasons she chose to attend Rice was because of the tremendous opportunities available through Rice’s Century Scholars Program. The program included funding for tuition as well as a chance to begin research in Mikos’s lab during her freshman year.

"My research experience at Rice has been life-changing in ways I could never have imagined four years ago," Datta said. "I never anticipated I would be traveling to international conferences, for example, but from the very beginning Dr. Mikos treated me as a valuable member of his research team. He provided encouragement. He let me follow my ideas. In short, he is the perfect mentor."

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>