Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IU School of Medicine scientists testing stem cells for peripheral artery disease

13.02.2006


Indiana University School of Medicine has begun unique clinical trial



Indiana University School of Medicine scientists have begun a unique clinical trial using stem cell injections as a treatment that could offer hope to tens of thousands of people who face sores, ulcers and even amputations due to severe peripheral artery disease.
An estimated 10 million Americans are affected by the poor blood circulation -- generally in the legs -- of peripheral artery disease (PAD). It is caused by atherosclerosis, the clogging and hardening of arteries that can lead to heart attacks. Although about half of those with PAD have no symptoms, others report varying levels of pain and other symptoms including numbness and sores on the legs and feet.

Early treatment is similar to actions to prevent heart disease, such as a better diet, stopping smoking cessation, weight loss and if appropriate, cholesterol-lowering drugs. If the disease progresses, patients may receive an artery bypass graft or an angioplasty procedure that widens the blood vessel.



But as many as 12 percent of PAD patients cannot undergo such surgical procedures, and 30,000 to 50,000 people in the United States receive amputations annually due to PAD, said Michael Murphy, M.D. assistant professor of surgery and an investigator at the Indiana Center for Vascular Biology and Medicine at the medical school, who is leading the stem cell trial. For many of these severely affected patients, their quality of life is similar to patients battling terminal cancer, he said.

The cells used in the IU trial include adult stem cells, which are "parent" cells that can create new specialized cells when needed by the body. In the IU trial, researchers are using stem cells -- and slightly more specialized descendants called progenitor cells -- that can create the cells that make up the lining of blood vessels.

In the clinical trial at IU School of Medicine, Dr. Murphy and his colleagues extract bone marrow from the patient’s hip while the patient is under a general anesthetic. The adult stem cells and progenitor cells are separated from the bone marrow in a laboratory procedure while the patient recovers from the anesthesia. The cells then are injected into the patient’s leg.

Patients will receive one injection and then will be evaluated on several occasions for 12 weeks. IU doctors expect to treat 10 patients in the trial, and seven have already undergone the procedure. (Two of the patients were treated at Duke University where Dr. Murphy was previously on faculty.) Although the researchers will be looking at such indicators as blood vessel growth and wound healing, the current trial is a initial, or phase 1, test meant primarily to demonstrate that the procedure is safe.

However, said Dr. Murphy, "We think this is a very promising treatment that could help patients with severe peripheral artery disease for whom there is now no effective therapy."

Previous studies in animals and other laboratory tests have indicated that injections of the stem and progenitor cells into tissues resulted in development of new blood vessels.

In addition, research has shown that people with heart disease, or who are at increased risk of heart disease, tended to have fewer of the blood vessel stem and progenitor cells circulating in their blood.

"Our hypothesis is that people run out of these cells, or they have inadequate supplies -- perhaps because of genetic factors. As a result, they can’t repair or replace damaged blood vessel cells, and heart disease ensues," said Keith March, M.D., Ph.D., director of the vascular biology and medicine center and professor of medicine and of cellular and integrative physiology.

The IU scientists hope to counteract the shortage of those critical cells by introducing the stem cells and progenitor cells taken from the patients’ bone marrow. In turn, it’s hoped, they will promote blood vessel repair and the growth of new blood vessels by stimulating the production of special protein growth factors.

By introducing the stem and progenitor cells taken from the patient’s bone marrow, the IU scientists hope that they will be able to jump-start those repair and replacement processes. They expect that would occur when the bone-marrow derived cells stimulate the production of special protein growth factors that would stimulate the development of new blood vessels.

If the current trial shows that the procedure is safe, the next step would be to test the procedure in a larger number of patients next year, Dr. Murphy said. In that test, the cells would be delivered intravenously in hopes that it would have a broader impact on circulation than a local injection. In addition, he and his colleagues hope to conduct trials using cells taken from fat tissue and from umbilical cord blood to avoid the surgery necessary for bone marrow extraction. Research also is underway to determine whether the cells could be modified in ways to encourage them to produce more growth enhancing proteins before they are given to the patients, Dr. Murphy said.

Eric Schoch | EurekAlert!
Further information:
http://www.iupui.edu

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>