Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IU School of Medicine scientists testing stem cells for peripheral artery disease

13.02.2006


Indiana University School of Medicine has begun unique clinical trial



Indiana University School of Medicine scientists have begun a unique clinical trial using stem cell injections as a treatment that could offer hope to tens of thousands of people who face sores, ulcers and even amputations due to severe peripheral artery disease.
An estimated 10 million Americans are affected by the poor blood circulation -- generally in the legs -- of peripheral artery disease (PAD). It is caused by atherosclerosis, the clogging and hardening of arteries that can lead to heart attacks. Although about half of those with PAD have no symptoms, others report varying levels of pain and other symptoms including numbness and sores on the legs and feet.

Early treatment is similar to actions to prevent heart disease, such as a better diet, stopping smoking cessation, weight loss and if appropriate, cholesterol-lowering drugs. If the disease progresses, patients may receive an artery bypass graft or an angioplasty procedure that widens the blood vessel.



But as many as 12 percent of PAD patients cannot undergo such surgical procedures, and 30,000 to 50,000 people in the United States receive amputations annually due to PAD, said Michael Murphy, M.D. assistant professor of surgery and an investigator at the Indiana Center for Vascular Biology and Medicine at the medical school, who is leading the stem cell trial. For many of these severely affected patients, their quality of life is similar to patients battling terminal cancer, he said.

The cells used in the IU trial include adult stem cells, which are "parent" cells that can create new specialized cells when needed by the body. In the IU trial, researchers are using stem cells -- and slightly more specialized descendants called progenitor cells -- that can create the cells that make up the lining of blood vessels.

In the clinical trial at IU School of Medicine, Dr. Murphy and his colleagues extract bone marrow from the patient’s hip while the patient is under a general anesthetic. The adult stem cells and progenitor cells are separated from the bone marrow in a laboratory procedure while the patient recovers from the anesthesia. The cells then are injected into the patient’s leg.

Patients will receive one injection and then will be evaluated on several occasions for 12 weeks. IU doctors expect to treat 10 patients in the trial, and seven have already undergone the procedure. (Two of the patients were treated at Duke University where Dr. Murphy was previously on faculty.) Although the researchers will be looking at such indicators as blood vessel growth and wound healing, the current trial is a initial, or phase 1, test meant primarily to demonstrate that the procedure is safe.

However, said Dr. Murphy, "We think this is a very promising treatment that could help patients with severe peripheral artery disease for whom there is now no effective therapy."

Previous studies in animals and other laboratory tests have indicated that injections of the stem and progenitor cells into tissues resulted in development of new blood vessels.

In addition, research has shown that people with heart disease, or who are at increased risk of heart disease, tended to have fewer of the blood vessel stem and progenitor cells circulating in their blood.

"Our hypothesis is that people run out of these cells, or they have inadequate supplies -- perhaps because of genetic factors. As a result, they can’t repair or replace damaged blood vessel cells, and heart disease ensues," said Keith March, M.D., Ph.D., director of the vascular biology and medicine center and professor of medicine and of cellular and integrative physiology.

The IU scientists hope to counteract the shortage of those critical cells by introducing the stem cells and progenitor cells taken from the patients’ bone marrow. In turn, it’s hoped, they will promote blood vessel repair and the growth of new blood vessels by stimulating the production of special protein growth factors.

By introducing the stem and progenitor cells taken from the patient’s bone marrow, the IU scientists hope that they will be able to jump-start those repair and replacement processes. They expect that would occur when the bone-marrow derived cells stimulate the production of special protein growth factors that would stimulate the development of new blood vessels.

If the current trial shows that the procedure is safe, the next step would be to test the procedure in a larger number of patients next year, Dr. Murphy said. In that test, the cells would be delivered intravenously in hopes that it would have a broader impact on circulation than a local injection. In addition, he and his colleagues hope to conduct trials using cells taken from fat tissue and from umbilical cord blood to avoid the surgery necessary for bone marrow extraction. Research also is underway to determine whether the cells could be modified in ways to encourage them to produce more growth enhancing proteins before they are given to the patients, Dr. Murphy said.

Eric Schoch | EurekAlert!
Further information:
http://www.iupui.edu

More articles from Life Sciences:

nachricht Lipid nanodiscs stabilize misfolding protein intermediates red-handed
18.12.2017 | Technische Universität München

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Single-photon detector can count to 4

18.12.2017 | Information Technology

Quantum memory with record-breaking capacity based on laser-cooled atoms

18.12.2017 | Physics and Astronomy

How much soil goes down the drain -- New data on soil lost due to water

18.12.2017 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>