Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IU School of Medicine scientists testing stem cells for peripheral artery disease

13.02.2006


Indiana University School of Medicine has begun unique clinical trial



Indiana University School of Medicine scientists have begun a unique clinical trial using stem cell injections as a treatment that could offer hope to tens of thousands of people who face sores, ulcers and even amputations due to severe peripheral artery disease.
An estimated 10 million Americans are affected by the poor blood circulation -- generally in the legs -- of peripheral artery disease (PAD). It is caused by atherosclerosis, the clogging and hardening of arteries that can lead to heart attacks. Although about half of those with PAD have no symptoms, others report varying levels of pain and other symptoms including numbness and sores on the legs and feet.

Early treatment is similar to actions to prevent heart disease, such as a better diet, stopping smoking cessation, weight loss and if appropriate, cholesterol-lowering drugs. If the disease progresses, patients may receive an artery bypass graft or an angioplasty procedure that widens the blood vessel.



But as many as 12 percent of PAD patients cannot undergo such surgical procedures, and 30,000 to 50,000 people in the United States receive amputations annually due to PAD, said Michael Murphy, M.D. assistant professor of surgery and an investigator at the Indiana Center for Vascular Biology and Medicine at the medical school, who is leading the stem cell trial. For many of these severely affected patients, their quality of life is similar to patients battling terminal cancer, he said.

The cells used in the IU trial include adult stem cells, which are "parent" cells that can create new specialized cells when needed by the body. In the IU trial, researchers are using stem cells -- and slightly more specialized descendants called progenitor cells -- that can create the cells that make up the lining of blood vessels.

In the clinical trial at IU School of Medicine, Dr. Murphy and his colleagues extract bone marrow from the patient’s hip while the patient is under a general anesthetic. The adult stem cells and progenitor cells are separated from the bone marrow in a laboratory procedure while the patient recovers from the anesthesia. The cells then are injected into the patient’s leg.

Patients will receive one injection and then will be evaluated on several occasions for 12 weeks. IU doctors expect to treat 10 patients in the trial, and seven have already undergone the procedure. (Two of the patients were treated at Duke University where Dr. Murphy was previously on faculty.) Although the researchers will be looking at such indicators as blood vessel growth and wound healing, the current trial is a initial, or phase 1, test meant primarily to demonstrate that the procedure is safe.

However, said Dr. Murphy, "We think this is a very promising treatment that could help patients with severe peripheral artery disease for whom there is now no effective therapy."

Previous studies in animals and other laboratory tests have indicated that injections of the stem and progenitor cells into tissues resulted in development of new blood vessels.

In addition, research has shown that people with heart disease, or who are at increased risk of heart disease, tended to have fewer of the blood vessel stem and progenitor cells circulating in their blood.

"Our hypothesis is that people run out of these cells, or they have inadequate supplies -- perhaps because of genetic factors. As a result, they can’t repair or replace damaged blood vessel cells, and heart disease ensues," said Keith March, M.D., Ph.D., director of the vascular biology and medicine center and professor of medicine and of cellular and integrative physiology.

The IU scientists hope to counteract the shortage of those critical cells by introducing the stem cells and progenitor cells taken from the patients’ bone marrow. In turn, it’s hoped, they will promote blood vessel repair and the growth of new blood vessels by stimulating the production of special protein growth factors.

By introducing the stem and progenitor cells taken from the patient’s bone marrow, the IU scientists hope that they will be able to jump-start those repair and replacement processes. They expect that would occur when the bone-marrow derived cells stimulate the production of special protein growth factors that would stimulate the development of new blood vessels.

If the current trial shows that the procedure is safe, the next step would be to test the procedure in a larger number of patients next year, Dr. Murphy said. In that test, the cells would be delivered intravenously in hopes that it would have a broader impact on circulation than a local injection. In addition, he and his colleagues hope to conduct trials using cells taken from fat tissue and from umbilical cord blood to avoid the surgery necessary for bone marrow extraction. Research also is underway to determine whether the cells could be modified in ways to encourage them to produce more growth enhancing proteins before they are given to the patients, Dr. Murphy said.

Eric Schoch | EurekAlert!
Further information:
http://www.iupui.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>