Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Campus Vienna Biocenter – Thriving Plant Research

13.02.2006


At the Campus Vienna Biocenter research has begun into environmental stress-induced changes to the plant genome supported by the Austrian genome program (GEN-AU). A EUR 1.3 million budget has been allocated to the three-year project. Two task groups at the University of Natural Resources and Applied Life Sciences and five at the Campus will investigate how extreme environmental conditions impact on the plant genome. It is also hoped that evidence will be found to support the hypothesis that inheritable environmental adaptations of living organisms do not occur randomly. Confirmation of this would revolutionise current thinking about heredity.

But surely everyone knows mutations happen by chance, don’t they? Researchers at the Campus Vienna Biocenter are not so certain, and this is precisely the question a three-year project there will now address. A total of 17 scientists will be looking into the effects of environmental stress on the genome of the model plant Arabidopsis with financial support from the Austrian genome program (GEN-AU), a program funded by the Ministry of Education, Science and Culture. They will also investigate whether stress reactions may contribute to further changes in the genome. If that were the case it would show that mutations do not simply arise randomly, but are also influenced by the plant metabolism – and it would be time to re-write the textbooks.

Prof. Heribert Hirt of the newly established Dept. of Plant Molecular Biology at the University of Vienna commented: "In the early 19th century it was widely believed that the adaptation of living organisms to their environment was a systematic process, and could be passed on to offspring. Darwin and modern genetics overturned these assumptions. According to them, inheritable adaptations are random. A few of them are beneficial, and are naturally selected. It is now known that random adaptations are caused by mutations. However for some time now there has been evidence that mutations are by no means as random as was thought. In lower organisms such as bacteria, in particular, it has been shown that mechanisms leading to an increased incidence of mutations are activated by certain types of stress."



The settled life style of higher organisms, and plants in particular, means that they have to resort to a wide range of reactions to adapt to environmental stress. The consortium of scientists in Vienna will now attempt to clarify whether changes in the plant genome can also arise from environmental stress. Such alterations include methylations of parts of the DNA or of associated proteins. These occasional chemical structure modifications regulate gene expression and precipitate environmental adaptations. But permanent genome changes such as base pair changes, or the multiplication of a single gene or whole chromosomes are also stress reactions. If it were demonstrated that these permanent, and hence inheritable changes are a specific reaction to environmental stress, this would mean that the plant influenced the environmental adaptations of future generations — a state of affairs at odds with current scientific teaching.

Prof. Hirt is well aware of the project’s wider implications. As he put it: "Plants are increasingly coming under threat from global climate change. In our project we will therefore subject plants to precisely the kinds of stressful conditions that are caused by climate change, including extreme temperatures, drought and increased UV radiation. We suspect that this abiotic stress affects the genome, but we know little about what these effects mean for species development. The aim of our project is to understand the impacts and to be able to use them in the future."

Till C. Jelitto | alfa
Further information:
http://www.univie.ac.at
http://www.prd.at

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>