Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NJIT chemists cook up new strain of carbon nanotubes

10.02.2006


Kitchen chemistry is alive and well at New Jersey Institute of Technology (NJIT) as chemical researchers report cooking up a new and more water- soluble strain of carbon nanotubes. An article about this work, "Rapidly Functionalized, Water-Dispersed Carbon Nanotubes at High Concentration," appeared Jan. 11, 2006, in the Journal of the American Chemical Society.



The team led by Somenath Mitra, PhD, acting chair and professor, department of chemistry and environmental sciences, and Iqbal Zafar, PhD, research professor in the same department, along with graduate student Yubing Wang, have developed a quick and simple method to produce water-soluble carbon nanotubes. This is something that has never been done before. They report that the new nanotubes are 125 times more water soluble than existing ones. In addition, the new nanotubes, following a short heat treatment, can conduct electricity as well as the non-soluble ones.

To achieve results the researchers added carbon nanotubes to a mixture of nitric acid and sulfuric acid. The mixture was heated in a closed vessel microwave reactor for only three minutes. In addition, upon closer examination, the NJIT researchers found that the new solution contained concentrations of soluble nanotubes that were as high as 10mg/mL, compared with only around 0.08mg/m, reported before. The new or transformed tubes, had turned into something with salt-like characteristics. It now contained carboxylated and acid-sulfonated groups, similar to those present in acetic acid or vinegar and salts of sulfuric acid, respectively. "


"These nanotubes therefore behave as poly-electrolytes or salts of polymers," said Iqbal. "These poly-electrolytes can be dissolved in solvents such as water or even more easily in acidic water and alcohols. They will also even dissolve partially in acetone."

Why does the world need highly soluble carbon nanotubes? "There are many benefits," said Mitra. "The most obvious ones are their value in electronic coatings and films or plastic or polymer composites. The former are used in electronic manufacturing to create lead-free, less toxic, conductive and soldering materials. The computer industry uses these coatings and films to remove heat, because they do that well.

"The polymer-based products are attractive to the auto and pharmaceutical industries," Mitra added. "Car makers prefer them because they make the paints and bumpers more durable, plus they remove static electricity. The latter increases flammability and corrodes parts. "

Future applications include the creation of faster computer chips and improved applications for the pharmaceutical industry, particularly in the area of drug delivery. "We expect the pharmaceutical industry to welcome these water soluble carbon nanotubes," said Iqbal. "Not only will the body be more easily able to ingest and integrate them, but manufacturers will also be able to use them to target specific cells biological cells."

Mitra has published more than 55 refereed articles in scholarly publications. He is the author of Environmental Chemical Analysis (CRC Press, New York, 1998) and the editor of Sample Preparation Techniques in Analytical Chemistry (John Wiley, New York, 2003). Mitra holds four patents and has made more than 100 presentations to academic peers at scholarly conferences. He received his doctorate in analytical chemistry from Southern Illinois University.

Mitra’s other research interests include finding analytical techniques and sensors to discover low level trace elements in air, water and soil. His projects include the development of instrumentation and methods for continuous, on-line analysis of trace levels of organic pollutants in air and water. These methods range from using gas chromatography or mass spectrometry to micro scale, lab-on-a-chip devices. His funders include the Environmental Protection Agency, Department of Defense, the National Science Foundation and others.

Iqbal obtained his doctorate in chemical and surface physics from the University of Cambridge, England and was a post-doctoral Fellow in molecular sciences at the University of Warwick, England. Among the honors awarded to Izqbal are the prestigious Alexander von Humboldt Fellowship (1977), four research awards from Picatinny Arsenal and Honeywell/Allied Signal (including the Allied Signal Chairman’s Award in 1991). Izqbal has published more than 170 papers in refereed journals, including articles in Science and Nature and edited two monographs. He has been awarded 14 US patents on topics ranging from energetics to nanotechnology. He was elected a Fellow of the American Physical Society in 1996 for his contributions to nanoscience and energetic materials.

Iqbal worked at Honeywell Corporation (the former Allied Corporation), Morristown, prior to joining NJIT in 2001. While here, Iqbal has received more than $2 million in federal funding. His interests include the nanotechnology of carbon nanotubes and silicone, fuel cells and Raman-based nanosensors.

Sheryl Weinstein | EurekAlert!
Further information:
http://www.njit.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>