Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NJIT chemists cook up new strain of carbon nanotubes

10.02.2006


Kitchen chemistry is alive and well at New Jersey Institute of Technology (NJIT) as chemical researchers report cooking up a new and more water- soluble strain of carbon nanotubes. An article about this work, "Rapidly Functionalized, Water-Dispersed Carbon Nanotubes at High Concentration," appeared Jan. 11, 2006, in the Journal of the American Chemical Society.



The team led by Somenath Mitra, PhD, acting chair and professor, department of chemistry and environmental sciences, and Iqbal Zafar, PhD, research professor in the same department, along with graduate student Yubing Wang, have developed a quick and simple method to produce water-soluble carbon nanotubes. This is something that has never been done before. They report that the new nanotubes are 125 times more water soluble than existing ones. In addition, the new nanotubes, following a short heat treatment, can conduct electricity as well as the non-soluble ones.

To achieve results the researchers added carbon nanotubes to a mixture of nitric acid and sulfuric acid. The mixture was heated in a closed vessel microwave reactor for only three minutes. In addition, upon closer examination, the NJIT researchers found that the new solution contained concentrations of soluble nanotubes that were as high as 10mg/mL, compared with only around 0.08mg/m, reported before. The new or transformed tubes, had turned into something with salt-like characteristics. It now contained carboxylated and acid-sulfonated groups, similar to those present in acetic acid or vinegar and salts of sulfuric acid, respectively. "


"These nanotubes therefore behave as poly-electrolytes or salts of polymers," said Iqbal. "These poly-electrolytes can be dissolved in solvents such as water or even more easily in acidic water and alcohols. They will also even dissolve partially in acetone."

Why does the world need highly soluble carbon nanotubes? "There are many benefits," said Mitra. "The most obvious ones are their value in electronic coatings and films or plastic or polymer composites. The former are used in electronic manufacturing to create lead-free, less toxic, conductive and soldering materials. The computer industry uses these coatings and films to remove heat, because they do that well.

"The polymer-based products are attractive to the auto and pharmaceutical industries," Mitra added. "Car makers prefer them because they make the paints and bumpers more durable, plus they remove static electricity. The latter increases flammability and corrodes parts. "

Future applications include the creation of faster computer chips and improved applications for the pharmaceutical industry, particularly in the area of drug delivery. "We expect the pharmaceutical industry to welcome these water soluble carbon nanotubes," said Iqbal. "Not only will the body be more easily able to ingest and integrate them, but manufacturers will also be able to use them to target specific cells biological cells."

Mitra has published more than 55 refereed articles in scholarly publications. He is the author of Environmental Chemical Analysis (CRC Press, New York, 1998) and the editor of Sample Preparation Techniques in Analytical Chemistry (John Wiley, New York, 2003). Mitra holds four patents and has made more than 100 presentations to academic peers at scholarly conferences. He received his doctorate in analytical chemistry from Southern Illinois University.

Mitra’s other research interests include finding analytical techniques and sensors to discover low level trace elements in air, water and soil. His projects include the development of instrumentation and methods for continuous, on-line analysis of trace levels of organic pollutants in air and water. These methods range from using gas chromatography or mass spectrometry to micro scale, lab-on-a-chip devices. His funders include the Environmental Protection Agency, Department of Defense, the National Science Foundation and others.

Iqbal obtained his doctorate in chemical and surface physics from the University of Cambridge, England and was a post-doctoral Fellow in molecular sciences at the University of Warwick, England. Among the honors awarded to Izqbal are the prestigious Alexander von Humboldt Fellowship (1977), four research awards from Picatinny Arsenal and Honeywell/Allied Signal (including the Allied Signal Chairman’s Award in 1991). Izqbal has published more than 170 papers in refereed journals, including articles in Science and Nature and edited two monographs. He has been awarded 14 US patents on topics ranging from energetics to nanotechnology. He was elected a Fellow of the American Physical Society in 1996 for his contributions to nanoscience and energetic materials.

Iqbal worked at Honeywell Corporation (the former Allied Corporation), Morristown, prior to joining NJIT in 2001. While here, Iqbal has received more than $2 million in federal funding. His interests include the nanotechnology of carbon nanotubes and silicone, fuel cells and Raman-based nanosensors.

Sheryl Weinstein | EurekAlert!
Further information:
http://www.njit.edu

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>