Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene thwarts some pathogens, gives access to others, could save crops

06.02.2006


The plant on the left is a normal laboratory test plant Arabidopsis. The plant on the right doesn’t have the gene BIK1, which helps fight off Botrytis cinerea, a pathogen that causes the gray mold disease on flowers, fruits and vegetables. Tesfaye Mengiste, a Purdue plant molecular biologist, discovered the gene and that mutant plants without it have curly leaves and shorter primary roots but more root hairs, as shown in the bottom photo. (Photos courtesy of Tesfaye Mengiste laboratory)


A single gene apparently thwarts a disease-causing invader that creates a fuzzy gray coating on flowers, fruits and vegetables. But the same gene provides access to a different type of pathogen.

A Purdue University plant molecular biologist and his collaborators in Austria and North Carolina identified the gene that helps plants recognize pathogens and also triggers a defense against disease. The gene and its defense mechanisms are similar to an immunity pathway found in people and in the laboratory research insect, the fruit fly.

As Botrytis cinerea, a pathogen that makes strawberries gray and fuzzy, tries to invade a plant, the gene BIK1 recognizes the pathogen and sets off a defensive reaction. Botrytis is a type of pathogen that can infect and obtain nutrients from dead cells on a plant and actually secretes toxic substances into plant tissue in order to gain entry. Another type of pathogen, called a biotroph, must feed on live plant cells. As a strategy to contain a pathogen, plants actually kill their own cells at the site where a biotrophic pathogen is attempting to invade.



"This gene, BIK1, makes plants resistant to pathogens such as Botrytis, but it allows biotrophic pathogens to invade," said Tesfaye Mengiste, a Purdue plant molecular biologist and assistant professor of botany and plant pathology. "The mutant plant that doesn’t have BIK1 actually shows decreased immunity to two pathogens, including Botrytis. But unexpectedly, it is completely resistant to virulent strains of the biotrophic bacteria."

The study of BIK1’s role in plant resistance to these two types of pathogens appeared in the January issue of the journal Plant Cell. The study also shows that the gene impacts plant growth and development as evidenced by abnormally short roots, overabundance of root hairs and wrinkly leaves on plants lacking the gene, according to the scientists.

The gene produces a protein located in the plant cell membranes and shows activity that is characteristic of proteins that act as enzymes. This finding led researchers to believe that these molecules give the early signals needed to set off a relay of biochemical events allowing the plant to fight off the pathogen, Mengiste said.

"Basically the BIK1 protein does this by regulating a plant defense hormone called salicylic acid," he said. "The amount of salicylic acid determines the type and level of a plant’s response to the pathogen. This is very important in terms of disease resistance.

"In this paper, we speculate that there is an optimum level of salicylic acid that is required for pathogen defense. When that level is exceeded, in some cases it may promote susceptibility to other pathogens by interfering with other defense strategies of the plants."

The research team first looked at normal plants and then at the BIK1 mutant when they began to study the effect of different hormones on plant growth and pathogen defense, Mengiste said. The scientists were surprised to find that the mutants had reduced primary root growth but increased numbers of root hairs. Along with their other findings, this revelation is leading the scientists to future research.

"It looks like this gene actually links pathogen response to plant growth and development," Mengiste said. "But how a single protein regulates these two processes that are singularly independent, we don’t know. That is the main purpose of our future studies.

"We need to figure out the details of how it regulates root growth and the length and amount of root hair. This may have implications in terms of nutrient absorption or total plant biomass."

The answers eventually could lead to increased crop yield and decreased produce loss due to Botrytis and other similar pathogens, he said.

Currently, the gray mold disease caused by Botrytis destroys about 10 percent of the grape crop annually and about 25 percent to 30 percent of tomato and strawberry crops in some seasons. It also infects many other fruits, vegetables, bulbs and a variety of flowers, including petunias, geraniums and chrysanthemums. Cool, humid weather fosters the fungus, which is spread by spores. The mold can appear in fields on growing plants and on strawberries, raspberries and other foods stored in the refrigerator.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu
Sources: Tesfaye Mengiste, (765) 494-0599, Mengiste@purdue.edu

Susan A. Steeves | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>