Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene thwarts some pathogens, gives access to others, could save crops

06.02.2006


The plant on the left is a normal laboratory test plant Arabidopsis. The plant on the right doesn’t have the gene BIK1, which helps fight off Botrytis cinerea, a pathogen that causes the gray mold disease on flowers, fruits and vegetables. Tesfaye Mengiste, a Purdue plant molecular biologist, discovered the gene and that mutant plants without it have curly leaves and shorter primary roots but more root hairs, as shown in the bottom photo. (Photos courtesy of Tesfaye Mengiste laboratory)


A single gene apparently thwarts a disease-causing invader that creates a fuzzy gray coating on flowers, fruits and vegetables. But the same gene provides access to a different type of pathogen.

A Purdue University plant molecular biologist and his collaborators in Austria and North Carolina identified the gene that helps plants recognize pathogens and also triggers a defense against disease. The gene and its defense mechanisms are similar to an immunity pathway found in people and in the laboratory research insect, the fruit fly.

As Botrytis cinerea, a pathogen that makes strawberries gray and fuzzy, tries to invade a plant, the gene BIK1 recognizes the pathogen and sets off a defensive reaction. Botrytis is a type of pathogen that can infect and obtain nutrients from dead cells on a plant and actually secretes toxic substances into plant tissue in order to gain entry. Another type of pathogen, called a biotroph, must feed on live plant cells. As a strategy to contain a pathogen, plants actually kill their own cells at the site where a biotrophic pathogen is attempting to invade.



"This gene, BIK1, makes plants resistant to pathogens such as Botrytis, but it allows biotrophic pathogens to invade," said Tesfaye Mengiste, a Purdue plant molecular biologist and assistant professor of botany and plant pathology. "The mutant plant that doesn’t have BIK1 actually shows decreased immunity to two pathogens, including Botrytis. But unexpectedly, it is completely resistant to virulent strains of the biotrophic bacteria."

The study of BIK1’s role in plant resistance to these two types of pathogens appeared in the January issue of the journal Plant Cell. The study also shows that the gene impacts plant growth and development as evidenced by abnormally short roots, overabundance of root hairs and wrinkly leaves on plants lacking the gene, according to the scientists.

The gene produces a protein located in the plant cell membranes and shows activity that is characteristic of proteins that act as enzymes. This finding led researchers to believe that these molecules give the early signals needed to set off a relay of biochemical events allowing the plant to fight off the pathogen, Mengiste said.

"Basically the BIK1 protein does this by regulating a plant defense hormone called salicylic acid," he said. "The amount of salicylic acid determines the type and level of a plant’s response to the pathogen. This is very important in terms of disease resistance.

"In this paper, we speculate that there is an optimum level of salicylic acid that is required for pathogen defense. When that level is exceeded, in some cases it may promote susceptibility to other pathogens by interfering with other defense strategies of the plants."

The research team first looked at normal plants and then at the BIK1 mutant when they began to study the effect of different hormones on plant growth and pathogen defense, Mengiste said. The scientists were surprised to find that the mutants had reduced primary root growth but increased numbers of root hairs. Along with their other findings, this revelation is leading the scientists to future research.

"It looks like this gene actually links pathogen response to plant growth and development," Mengiste said. "But how a single protein regulates these two processes that are singularly independent, we don’t know. That is the main purpose of our future studies.

"We need to figure out the details of how it regulates root growth and the length and amount of root hair. This may have implications in terms of nutrient absorption or total plant biomass."

The answers eventually could lead to increased crop yield and decreased produce loss due to Botrytis and other similar pathogens, he said.

Currently, the gray mold disease caused by Botrytis destroys about 10 percent of the grape crop annually and about 25 percent to 30 percent of tomato and strawberry crops in some seasons. It also infects many other fruits, vegetables, bulbs and a variety of flowers, including petunias, geraniums and chrysanthemums. Cool, humid weather fosters the fungus, which is spread by spores. The mold can appear in fields on growing plants and on strawberries, raspberries and other foods stored in the refrigerator.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu
Sources: Tesfaye Mengiste, (765) 494-0599, Mengiste@purdue.edu

Susan A. Steeves | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>