Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fingerprints provide crucial clue to new nanofiber fabrication technique

27.01.2006


Fingerprints are usually used to identify people but, this time, they gave Penn State chemical engineers the crucial clue needed to discover an easy, versatile new method for making nanofibers that have potential uses in advanced filtration as well as wound care, drug delivery, bioassays and other medical applications.



The new technique is based on the way forensic scientists develop fingerprints from a crime scene and is easier and more versatile than either of the current methods, templates or electrospinning, used commercially to make nanofibers. The first nanofibers generated by the technique are made from the basic ingredient of Super Glue , cyanoacrylate, which is a biologically-compatible material already used in liquid sutures, spheres for drug delivery and in experimental cancer treatment. However, the researchers say that other materials, like cyanoacrylate, that form solid polymers when nudged by a catalyst could potentially also be used in the process.

Dr. Henry C. Foley, professor of chemical engineering who directed the project, says, "The new technique is so versatile that it allows us not only to make nano-scale fibers but also nano-sized flat sheets, spheres and even wrinkled sheets that look tortellini-like."


The researchers can also generate patterned surfaces and say that the process could conceivably be used in an ink jet printer.

The research is detailed in a paper, "Facile Catalytic Growth of Cyanoacrylate Nanofibers," published online today (Jan. 26) in the British journal, The Royal Society of Chemistry, Chemical Communications. The authors are Pratik J. Mankidy, doctoral candidate in chemical engineering; Ramakrishnan Rajagopalan, research associate at Penn State’s Materials Research Laboratory, and Foley, who is also associate vice president for research at the University. The journal is available at: http://xlink.rsc.org/?DOI=B514600C

Foley explains that forensic scientists develop latent fingerprints via a process known as cyanoacrylate fuming. Fingerprints left on a surface are exposed to fumes of cyanoacrylate, which form a white polymer residue that makes the ridges of the fingerprint visible.

One of the researchers, Pratik Mankidy, had accidentally left his fingerprints on a piece of research equipment that had been secured with Super Glue and nanofibers appeared. Putting two and two together, the researchers set out to discover what constituents of fingerprints trigger the cyanoacrylate polymerization on the ridges of fingerprints. They made synthetic fingerprints from a mixture of a known polymer initiator, common table salt in water, and a non-initiator, linoleic acid, found on fingers. Then they exposed the fake prints to cyanoacrylate fuming. Sure enough, they got nanofibers similar to the ones Mankidy’s fingerprints had generated accidentally. They also fumed cyanoacrylate on single initiators and found that sodium hydroxide, potassium hydroxide and potassium acetate produced tortellini-like films of the polymer. When ammonium hydroxide was fumed with cyanoacrylate, it produced nano-sized spheres.

The researchers note that the role played by the presence of the non-initiating components in the fingerprint mixture is not completely understood. They are continuing their experiments to understand the process more completely. A majority of the fibers produced by the new process have diameters in the 200-250-nanometer range and are hundreds of microns long. Typically, nanofibers that are currently commercially available are in this same range. Foley notes, "Our findings open up a whole new world of opportunity for control of nanoscale structures through chemistry via catalysis."

Barbara Hale | EurekAlert!
Further information:
http://www.psu.edu
http://xlink.rsc.org/?DOI=B514600C

More articles from Life Sciences:

nachricht Rutgers scientists discover 'Legos of life'
23.01.2018 | Rutgers University

nachricht Researchers identify a protein that keeps metastatic breast cancer cells dormant
23.01.2018 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>