Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proof that proteins can be custom-designed

27.01.2006


Ever since the advent of recombinant-DNA technology, scientists have conceived that it will be feasible to create entirely new enzymes for specific needs. In an article in today’s issue of the journal Science, researchers from Uppsala and Korea present concrete proof of this. They have succeeded in converting an enzyme involved in normal human metabolism into an enzyme that is custom-designed to break down a specific substance, cefotaxime.



“The product in this case is not the main point, but we have shown that it is possible to totally transform an enzyme for a new and pre-determined activity. We have succeeded by using a rational reconstruction of the enzyme’s active site in combination with directed molecular evolution in test tubes,” says Professor Bengt Mannervik, at the Department of Biochemistry and Organic Chemistry, who planned the study.

In the cells of all organisms, proteins are involved in molecular functions of highly disparate types: as receptors of light and smells, for transmission of signals, mechanical work, control of the function of genes, and the synthesis and degradation of chemical substances. Despite all of these diverse functions, only an insignificant number of all imaginable protein structures ever come to existence in living cells. With the help of recombinant-DNA technology and chemical modifications scientists around the world are therefore trying to produce entirely new proteins that can be used for biotechnological applications in medicine, the drug industry, forestry and agriculture, and the production of foodstuffs. However, researchers have had to look for proteins at random after reconstructions, like a needle in a haystack.


Bengt Mannervik and his research team at Uppsala University, in collaboration with Hak-Sun Kim’s research team in Korea, have converted an enzyme in human cells that participates in normal metabolism into an enzyme that degrades cefotaxime, an antibiotic similar to penicillin. The human enzyme was complemented with parts from the bacterial enzyme beta-lactamase, which bacteria use to break down antibiotics of the penicillin type. The scientists then managed to isolate bacteria with the new enzyme and to show that they enhanced their capacity to survive by degrading cefotaxime.

“The study shows that it is possible to drastically alter the properties of a natural protein and that an enzyme’s functions can be custom-designed for new uses,” says Bengt Mannervik.

Anneli Waara | alfa
Further information:
http://www.sciencemag.org/
http://www.uu.se

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>