Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proof that proteins can be custom-designed

27.01.2006


Ever since the advent of recombinant-DNA technology, scientists have conceived that it will be feasible to create entirely new enzymes for specific needs. In an article in today’s issue of the journal Science, researchers from Uppsala and Korea present concrete proof of this. They have succeeded in converting an enzyme involved in normal human metabolism into an enzyme that is custom-designed to break down a specific substance, cefotaxime.



“The product in this case is not the main point, but we have shown that it is possible to totally transform an enzyme for a new and pre-determined activity. We have succeeded by using a rational reconstruction of the enzyme’s active site in combination with directed molecular evolution in test tubes,” says Professor Bengt Mannervik, at the Department of Biochemistry and Organic Chemistry, who planned the study.

In the cells of all organisms, proteins are involved in molecular functions of highly disparate types: as receptors of light and smells, for transmission of signals, mechanical work, control of the function of genes, and the synthesis and degradation of chemical substances. Despite all of these diverse functions, only an insignificant number of all imaginable protein structures ever come to existence in living cells. With the help of recombinant-DNA technology and chemical modifications scientists around the world are therefore trying to produce entirely new proteins that can be used for biotechnological applications in medicine, the drug industry, forestry and agriculture, and the production of foodstuffs. However, researchers have had to look for proteins at random after reconstructions, like a needle in a haystack.


Bengt Mannervik and his research team at Uppsala University, in collaboration with Hak-Sun Kim’s research team in Korea, have converted an enzyme in human cells that participates in normal metabolism into an enzyme that degrades cefotaxime, an antibiotic similar to penicillin. The human enzyme was complemented with parts from the bacterial enzyme beta-lactamase, which bacteria use to break down antibiotics of the penicillin type. The scientists then managed to isolate bacteria with the new enzyme and to show that they enhanced their capacity to survive by degrading cefotaxime.

“The study shows that it is possible to drastically alter the properties of a natural protein and that an enzyme’s functions can be custom-designed for new uses,” says Bengt Mannervik.

Anneli Waara | alfa
Further information:
http://www.sciencemag.org/
http://www.uu.se

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>