Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Master genetic switch found for chronic pain

26.01.2006


In experiments with mice, researchers have found that eliminating what appears to be a master genetic switch for the development of pain-sensing neurons knocks out the animals’ response to "neuropathic pain." Such pain is abnormal pain that outlasts the injury and is associated with nerve and/or central nervous system changes. The animals rendered deficient in the gene, called Runx1, also showed lack of response to discomfort caused by heat and cold and inflammation. The researchers said that their findings, reported in the February 2, 2006, issue of Neuron, could have implications for the design of improved pain therapies.



In their experiments, Qiufu Ma and colleagues studied the Runx1 gene because past research had shown it to code for a protein "transcription factor," which is a master regulator of multiple genes. Runx1 is one of a group of proteins that are key players involved in transmitting external sensory information, like pain and the perception of movement, to the spinal cord. In two other related papers in the same issue, Silvia Arber and colleagues and Tom Jessell and colleagues examine related aspects of the biological importance underlying the Runx transcription factors.

Runx1 was known to be expressed only in sensory nerve cells called "nociceptive" cells, involved in sensing pain. Such pain-sensing cells function by translating painful stimuli into nerve signals via specialized pores called "ion channels" in the neurons, as well as specialized receptors. The researchers’ studies of Runx1 in these cells revealed that during embryonic development, the gene is characteristically expressed in pain-receptor cells involved in neuropathic pain. When they knocked out the gene, they found that the normal development of such specialized nerve cells was impaired. The animals had lost ion channels known to be involved in reacting to painful heat or cold, as well as those involved in pain due to damaged tissue. The researchers also found that the Runx1-deficient animals showed deficient wiring of certain types of pain neurons.


In key experiments, the researchers measured the Runx1-deficient animals’ response to four types of pain--thermal, mechanical, inflammatory, and neuropathic.

The researchers produced a pain response by subjecting the animals’ hindpaw to either the cold of acetone or an uncomfortably warm plate (thermal); the uncomfortable prick of a filament (mechanical); an injection of an inflammation-inducing chemical (inflammatory); or nerve damage (neuropathic). They quantified the animals’ response by measuring how long the animals lifted or licked their affected paw in response to the treatments.

Ma and his colleagues found that, while the deficient animals showed normal response to mechanical pain, they showed significantly lowered thermal, neuropathic, and inflammatory pain response.

The researchers concluded that while the diverse specialized components of the pain-sensing machinery could be established in a piecemeal fashion, "Our data, however, provide strong evidence that Runx1 is required to specify the receptive properties of a large cohort of nociceptive sensory neurons." They also concluded that the dual functions they discovered for Runx1--controlling specification of sensory neurons and regulating how they target their wiring--"form a genetic basis for the assembly of specific neural circuits for nociceptive information processing.

"Finally, the identification of a core transcriptional control program for many of the ion channels and receptors known to transduce noxious stimuli has intriguing implications for the design of more effective pain therapies," they wrote.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>