Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Master genetic switch found for chronic pain

26.01.2006


In experiments with mice, researchers have found that eliminating what appears to be a master genetic switch for the development of pain-sensing neurons knocks out the animals’ response to "neuropathic pain." Such pain is abnormal pain that outlasts the injury and is associated with nerve and/or central nervous system changes. The animals rendered deficient in the gene, called Runx1, also showed lack of response to discomfort caused by heat and cold and inflammation. The researchers said that their findings, reported in the February 2, 2006, issue of Neuron, could have implications for the design of improved pain therapies.



In their experiments, Qiufu Ma and colleagues studied the Runx1 gene because past research had shown it to code for a protein "transcription factor," which is a master regulator of multiple genes. Runx1 is one of a group of proteins that are key players involved in transmitting external sensory information, like pain and the perception of movement, to the spinal cord. In two other related papers in the same issue, Silvia Arber and colleagues and Tom Jessell and colleagues examine related aspects of the biological importance underlying the Runx transcription factors.

Runx1 was known to be expressed only in sensory nerve cells called "nociceptive" cells, involved in sensing pain. Such pain-sensing cells function by translating painful stimuli into nerve signals via specialized pores called "ion channels" in the neurons, as well as specialized receptors. The researchers’ studies of Runx1 in these cells revealed that during embryonic development, the gene is characteristically expressed in pain-receptor cells involved in neuropathic pain. When they knocked out the gene, they found that the normal development of such specialized nerve cells was impaired. The animals had lost ion channels known to be involved in reacting to painful heat or cold, as well as those involved in pain due to damaged tissue. The researchers also found that the Runx1-deficient animals showed deficient wiring of certain types of pain neurons.


In key experiments, the researchers measured the Runx1-deficient animals’ response to four types of pain--thermal, mechanical, inflammatory, and neuropathic.

The researchers produced a pain response by subjecting the animals’ hindpaw to either the cold of acetone or an uncomfortably warm plate (thermal); the uncomfortable prick of a filament (mechanical); an injection of an inflammation-inducing chemical (inflammatory); or nerve damage (neuropathic). They quantified the animals’ response by measuring how long the animals lifted or licked their affected paw in response to the treatments.

Ma and his colleagues found that, while the deficient animals showed normal response to mechanical pain, they showed significantly lowered thermal, neuropathic, and inflammatory pain response.

The researchers concluded that while the diverse specialized components of the pain-sensing machinery could be established in a piecemeal fashion, "Our data, however, provide strong evidence that Runx1 is required to specify the receptive properties of a large cohort of nociceptive sensory neurons." They also concluded that the dual functions they discovered for Runx1--controlling specification of sensory neurons and regulating how they target their wiring--"form a genetic basis for the assembly of specific neural circuits for nociceptive information processing.

"Finally, the identification of a core transcriptional control program for many of the ion channels and receptors known to transduce noxious stimuli has intriguing implications for the design of more effective pain therapies," they wrote.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>