Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nobelist discovers antidepressant protein in mouse brain

06.01.2006


A protein that seems to be pivotal in lifting depression has been discovered by a Nobel Laureate researcher funded by the National Institutes of Health’s National Institute of Mental Health (NIMH).



"Mice deficient in this protein, called p11, display depression-like behaviors, while those with sufficient amounts behave as if they have been treated with antidepressants," explained Paul Greengard, Ph.D., a Rockefeller University neuroscientist who received the 2000 Nobel Prize in Physiology or Medicine for discoveries about the workings of such neuronal signaling systems. He and his colleagues found that p11 appears to help regulate signaling of the brain messenger chemical serotonin, a key target of antidepressants, which has been implicated in psychiatric illnesses such as depression and anxiety disorders. They report on their findings in the January 6, 2005 issue of Science.

Brain cells communicate with each other by secreting messengers, such as serotonin, which bind to receptors located on the surface of receiving cells. Serotonin selective reuptake inhibitors (SSRIs), medications commonly prescribed for anxiety and depression, compensate for reduction in serotonin signaling by boosting levels and binding of serotonin to receptors. Previous studies have suggested that serotonin receptors are essential in regulating moods and in mediating the effects of SSRIs, but given the complexity of the serotonin system, exactly how these receptors work remains a mystery.


To explore how a particular serotonin receptor (5-HT1B) functions, Greengard and colleagues conducted tests to find out what proteins these receptors interact with in brain cells. They found that 5-HT1B interacts with p11, and according to Greengard, p11 plays a role in the recruitment of receptors to the cell surface where they are more functional.

This finding led the researchers to suspect that p11 levels might be directly involved in the development of depression, anxiety and similar psychiatric illnesses thought to involve faulty serotonin receptors. To test this idea, the researchers examined p11 levels in the brains of depressed humans and "helpless" mice, considered a model of depression since they exhibit behaviors similar to those of depressed humans. They compared these two groups to non-depressed humans and control mice. Levels of p11 were found to be substantially lower in depressed humans and helpless mice, which suggests that altered p11 levels may be involved in the development of depression-like symptoms.

The researchers also examined the effect of treatments designed to boost weak serotonin systems on p11 levels in brain cells by administering to mice two types of antidepressants – a tricyclic, a monoamine oxidase (MAO) inhibitor – and electroconvulsive therapy (ECT).

"These three different ways of treating depression all caused an increase in the amount of p11 in the brains of these mice," said Greengard. "They all work in totally different ways, but in all cases they caused the same biochemical change. So, it’s pretty convincing that p11 is associated with the main therapeutic action of antidepressant drugs."

Since humans and mice with symptoms of depression were found to have substantially lower levels of p11 in brain cells compared to non-depressed animals, Greengard and colleagues hypothesized that if p11 levels were increased, mice would exhibit antidepressant-like behaviors, and if p11 were reduced, mice would exhibit depression-like symptoms.

As hypothesized, mice with over-expressed p11 genes, compared to control mice, had increased mobility in a test that is used to measure antidepressant-like activity. They also had more 5-HT1B receptors at the cell surface that were capable of increased serotonin transmission.

The opposite occurred when researchers molecularly knocked out the p11 gene in mice. Compared to control mice, knockout mice had fewer receptors at the cell surface, reduced serotonin signaling, decreased responsiveness to sweet reward, and were less mobile, behaviors which are considered depression-like. Also, the 5-HT1B receptors of p11 knockout mice were less responsive to serotonin and antidepressant drugs compared to those of control mice, which further implicates p11 in the main action of antidepressant medications.

"Manipulations that are antidepressant in their activity increased the level of the protein and those which are depressant reduce it," said Greengard. "It seems as though antidepressant medications need to increase p11 levels in order to achieve their effect." Future studies should elucidate exactly how antidepressants increase levels of this molecule, he added.

Also participating in the study: Per Svenningsson, Ilan Rachleff, Marc Flajolet, The Rockefeller University; Karima Chergui, Xiaoqun Zhang, Karolinska Institute; Malika El Yacoubi, Jean-Marie Vaugeois, Faculty of Medicine and Pharmacy, Rouen Cedex, France; George G. Nomikos, Eli Lilly and Company.

Latifa Boyce | EurekAlert!
Further information:
http://www.nih.gov

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>