Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loosen leash on cancer protein ’watchdog,’ researchers say

06.01.2006


Scientists may have found a way to keep a protein "watchdog" on high alert to stop hereditary cancers from overrunning our bodies – if they can keep it on a leash of just the right length.



In a collaborative effort, a team of scientists including Purdue University’s Susan M. Mendrysa has found that one of the proteins found naturally in cells has the ability to halt the progression of intestinal tumors that arise from genetic predisposition. When the activity of this protein, known only by the technical name of p53, was artificially increased in the cells of laboratory mice, those known to have a hereditary predisposition for developing cancer showed a marked decrease in tumor development when compared with mice that had normal p53 activity.

The study also indicated that the treated mice did not suffer from the side effect the research team most feared: premature aging, which has been linked to overproduction of p53 in other studies. The discovery could assist in future human cancer treatments.


"It’s a question of balance," said Mendrysa (pronounced men-DRISS-ah), who is an assistant professor of basic medical sciences in Purdue’s College of Veterinary Medicine and co-lead author of the work. "The p53 protein has been long known as an effective weapon against cancers, but we know from previous research that we can’t just let it run rampant through the body without some very unpleasant side effects. But if we can give it just enough slack in its leash, it could help some patients from cancer-prone families from ever developing the disease."

The team’s research appears in the Jan. 1 issue of the scientific journal Genes and Development. Members of the group include the University of Wisconsin — Madison’s Kathleen A. O’Leary (co-lead author), Matthew K. McElwee and Jennifer Michalowski; the Fred Hutchinson Cancer Research Center’s Robert N. Eisenman; and the National Cancer Institute’s Mary Ellen Perry and Douglas A. Powell. When the group came together, Mendrysa said, they were primarily concerned with how they might stop their prospective protein watchdog from doing more harm than good.

"Research is turning up lots of possible inroads for combating disease these days, and other research teams had found that p53 was a good prospect for fighting cancer," she said. "With too little p53 protein, people and mice are more likely to develop cancer. But it’s not a panacea. Embryonic mice with too much p53 in their systems don’t survive gestation. Moreover, recent reports have suggested that high levels of p53 may accelerate aging. Having the wrong amount of p53 protein, therefore, leaves you with two potentially unappealing choices: Do you want to die early of cancer or die early from wearing your body out?"

The scientists theorized that the solution could lie with another protein the body produces naturally to keep p53 in check. This other protein, called Mdm2, keeps p53 inactive until it is needed, acting like a leash on a watchdog.

"p53 seems to be an important stress response gene that fights cancer when it works," Mendrysa said. "So we decided to see what we could do to increase p53’s activity without completely cutting its Mdm2 leash."

The scientists spent three years creating a strain of genetically modified mouse that only produced about 20 percent of the normal amount of Mdm2 protein, which is far less than they would have produced under ordinary conditions. The mice were created to answer a twofold question: Could increasing their levels of p53 delay or prevent tumor formation in living creatures, and would there be any negative consequences to the increase?

"We were primarily interested in the second part of the question when we began," Mendrysa said. "These mice had a family trait that typically made them develop cancerous lesions in their intestines, but our main goal was to see whether p53 sped up the aging process. Fortunately, we got more kinds of good news than we initially expected."

Mice with such a predisposition generally developed about 50 intestinal lesions within six months of birth, but mice modified for the study had only developed three or fewer within that time frame. Moreover, there was no sign that the mice had aged any faster than normal.

"We checked for the sort of characteristics that the elderly of many mammal species typically show – thinner skin, lower bone density, spinal hunching and the like," Mendrysa said. "We couldn’t find any differences between them and normal mice. And their cancer rates were dramatically lower than expected, which turned out to be the more significant finding of the study."

Mendrysa said the results were an enlightening fundamental discovery about suppressing hereditary intestinal cancers. But she also said the work raised a number of questions that would need to be answered before the research could translate into human therapy.

"These mice were genetically modified at conception to produce higher p53 levels, which is quite a different treatment than just giving normal mice a pill," Mendrysa said. "Also, mice in our study are not subject to the same stresses as, for example, a person working on Wall Street. It remains to be seen whether higher p53, in conjunction with other factors such as stress, could still lead to negative consequences such as aging. We’ll have to do a lot more work before this becomes a routine part of medicine’s anticancer toolkit.

"Essentially, this study validates Mdm2 as a potentially powerful chemopreventative for some kinds of hereditary cancer, and, if used properly, it might perform well without elevating the risks of aging that other groups have found. The benefits seem to outweigh the risks.

"We’d like to expand the research and look into how Mdm2 and p53 affect other cancer predispositions. If we can find the right length for the leash, someday we may be able to find a way to specify it without resorting to genetic modification. Then we might have a way to keep the watchdog on high alert."

This research was supported in part by the National Institutes of Health.

Mendrysa is affiliated with the Purdue Cancer Center. One of just seven National Cancer Institute-designated basic-research facilities in the United States, the center attempts to help cancer patients by identifying new molecular targets and designing future agents and drugs for effectively detecting and treating cancer. The center is part of the university’s Oncological Sciences Center in Discovery Park.

Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu

Source: Susan M. Mendrysa, (765) 494-8622, mendrysa@purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Chad Boutin | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>