Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

VCU Massey Cancer Center researchers identify a new class of anti-cancer drugs based on platinum

04.01.2006


Researchers at Virginia Commonwealth University’s Massey Cancer Center have created a new platinum-based, anti-cancer agent able to overcome acquired drug resistance by first modifying the way it is absorbed into cancer cells and then attacking the DNA of those cancer cells.



The findings may help researchers design a new generation of anti-cancer drugs that selectively target cancer cells, reduce resistance and side effects and expand the range of tumors that can be treated by platinum.

In the Dec. 26 issue of the journal Inorganic Chemistry researchers reported on the design of a new trinuclear platinum compound and demonstrated that its cellular absorption is significantly greater than that of neutral cisplatin, as well as other multi-nuclear platinum compounds. The enhanced uptake into cancer cells takes advantage of weak molecular interactions on the cells’ surface. These results underscore the importance of the new compound’s “non-covalent” interactions, prior to the attack on DNA. Non-covalent interactions minimize potential side reactions and produce changes in the structure of proteins and DNA, which is different from currently used drugs. This research was selected as the cover article for the print version of the journal, Issue 26.


Researchers compared the cytotoxicity and cellular concentrations of three anti-cancer drugs including the phase II clinical drug, BBR 3464, cisplatin and the new trinuclear platinum compound. In a laboratory model, human ovarian cancer cells were exposed to each drug.

“In platinum antitumor chemistry our objective is to design and develop complexes acting by new mechanisms of action,” said Nicholas Farrell, Ph.D., professor and chair in the Department of Chemistry at VCU, and lead author of the study. “Resistance to current drugs is due to poor cellular absorption and an increased ability of the cell to process or repair the damage caused by the chemotherapeutic agent.”

“Our novel compound was designed to overcome resistance by emphasizing new modes of DNA binding, and in the process we have found that the amount of platinum drug entering cells is increased,” he said. “The effectiveness of a platinum drug in killing cells is directly related to its concentration inside the cell.”

DNA-damaging agents, such as cisplatin, are among the most effective classes of compounds in clinical use for the treatment of cancer. The principal function of cisplatin is to bind to DNA. Platinum drugs are the largest class of anti-cancer drugs in the clinic and the most important in terms of treatment. Cisplatin is a chemotherapy drug that is given for the treatment of metastatic testicular or ovarian cancers, and some advanced bladder cancer, and is a very effective drug in combination with other therapies.

However, according to Farrell, these current agents have limited activity against many common human cancers, and they are susceptible to acquired drug resistance. He added that resistance to cisplatin has become a clinically relevant issue – especially for patients battling ovarian cancer because they develop resistance to cisplatin at a rapid rate.

Farrell said that use of the “non-covalent” approach and emphasizing cell uptake may help minimize the side effects of current platinum drugs. He said that both cell uptake and the ability of the cell to minimize the effect of DNA attack, or DNA repair, play a critical role in cellular resistance to cisplatin by altering its ability to effectively kill tumor cells. By understanding the features of cisplatin that contribute to resistance, Farrell and his team designed the new compound to circumvent these problems.

This work was supported by a grant from the National Institutes of Health. The study can be accessed via http://pubs3.acs.org/acs/journals/toc.page?incoden=inocaj&indecade=0&involume=44&inissue=.

Researchers in the VCU departments of chemistry and biology, and the Department of Pharmacology and Toxicology in the VCU School of Medicine collaborated on this research. Researchers included Amanda L. Harris, Ph.D.; Xiaohong Yang, Ph.D.; Alex Hegmans, Ph.D.; Lawrence Povirk; and John J. Ryan, Ph.D. Lloyd Kelland, Ph.D., from the Institute of Cancer Research in England also contributed to this work.

Sathya Achia-Abraham | EurekAlert!
Further information:
http://pubs3.acs.org/acs/journals/toc.page?incoden=inocaj&indecade=0&involume=44&inissue=
http://www.vcu.edu/mcc/

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>