Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

VCU Massey Cancer Center researchers identify a new class of anti-cancer drugs based on platinum

04.01.2006


Researchers at Virginia Commonwealth University’s Massey Cancer Center have created a new platinum-based, anti-cancer agent able to overcome acquired drug resistance by first modifying the way it is absorbed into cancer cells and then attacking the DNA of those cancer cells.



The findings may help researchers design a new generation of anti-cancer drugs that selectively target cancer cells, reduce resistance and side effects and expand the range of tumors that can be treated by platinum.

In the Dec. 26 issue of the journal Inorganic Chemistry researchers reported on the design of a new trinuclear platinum compound and demonstrated that its cellular absorption is significantly greater than that of neutral cisplatin, as well as other multi-nuclear platinum compounds. The enhanced uptake into cancer cells takes advantage of weak molecular interactions on the cells’ surface. These results underscore the importance of the new compound’s “non-covalent” interactions, prior to the attack on DNA. Non-covalent interactions minimize potential side reactions and produce changes in the structure of proteins and DNA, which is different from currently used drugs. This research was selected as the cover article for the print version of the journal, Issue 26.


Researchers compared the cytotoxicity and cellular concentrations of three anti-cancer drugs including the phase II clinical drug, BBR 3464, cisplatin and the new trinuclear platinum compound. In a laboratory model, human ovarian cancer cells were exposed to each drug.

“In platinum antitumor chemistry our objective is to design and develop complexes acting by new mechanisms of action,” said Nicholas Farrell, Ph.D., professor and chair in the Department of Chemistry at VCU, and lead author of the study. “Resistance to current drugs is due to poor cellular absorption and an increased ability of the cell to process or repair the damage caused by the chemotherapeutic agent.”

“Our novel compound was designed to overcome resistance by emphasizing new modes of DNA binding, and in the process we have found that the amount of platinum drug entering cells is increased,” he said. “The effectiveness of a platinum drug in killing cells is directly related to its concentration inside the cell.”

DNA-damaging agents, such as cisplatin, are among the most effective classes of compounds in clinical use for the treatment of cancer. The principal function of cisplatin is to bind to DNA. Platinum drugs are the largest class of anti-cancer drugs in the clinic and the most important in terms of treatment. Cisplatin is a chemotherapy drug that is given for the treatment of metastatic testicular or ovarian cancers, and some advanced bladder cancer, and is a very effective drug in combination with other therapies.

However, according to Farrell, these current agents have limited activity against many common human cancers, and they are susceptible to acquired drug resistance. He added that resistance to cisplatin has become a clinically relevant issue – especially for patients battling ovarian cancer because they develop resistance to cisplatin at a rapid rate.

Farrell said that use of the “non-covalent” approach and emphasizing cell uptake may help minimize the side effects of current platinum drugs. He said that both cell uptake and the ability of the cell to minimize the effect of DNA attack, or DNA repair, play a critical role in cellular resistance to cisplatin by altering its ability to effectively kill tumor cells. By understanding the features of cisplatin that contribute to resistance, Farrell and his team designed the new compound to circumvent these problems.

This work was supported by a grant from the National Institutes of Health. The study can be accessed via http://pubs3.acs.org/acs/journals/toc.page?incoden=inocaj&indecade=0&involume=44&inissue=.

Researchers in the VCU departments of chemistry and biology, and the Department of Pharmacology and Toxicology in the VCU School of Medicine collaborated on this research. Researchers included Amanda L. Harris, Ph.D.; Xiaohong Yang, Ph.D.; Alex Hegmans, Ph.D.; Lawrence Povirk; and John J. Ryan, Ph.D. Lloyd Kelland, Ph.D., from the Institute of Cancer Research in England also contributed to this work.

Sathya Achia-Abraham | EurekAlert!
Further information:
http://pubs3.acs.org/acs/journals/toc.page?incoden=inocaj&indecade=0&involume=44&inissue=
http://www.vcu.edu/mcc/

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>