Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New view of cancer: ’Epigenetic’ changes come before mutations

23.12.2005


A Johns Hopkins researcher, with colleagues in Sweden and at the Fred Hutchinson Cancer Research Center, suggests that the traditional view of cancer as a group of diseases with markedly different biological properties arising from a series of alterations within a cell’s nuclear DNA may have to give way to a more complicated view. In the January issue of Nature Reviews Genetics, available online Dec. 21, he and his colleagues suggest that cancers instead begin with "epigenetic" alterations to stem cells.

"We’re not contradicting the view that genetic changes occur in the development of cancers, but there also are epigenetic changes and those come first," says lead author Andrew Feinberg, M.D., M.P.H., King Fahd Professor of Medicine and director of the Center for Epigenetics in Common Human Disease at Johns Hopkins.

Cells affected by epigenetic changes look normal under a microscope at low levels of resolution, Feinberg says, "but if you look carefully at the genome, you find there are subtle changes." By tracking these changes, he suggests, doctors potentially could treat people before tumors develop in much the same way as cardiologists prescribe cholesterol-lowering drugs to help prevent heart disease.



Epigenetic changes -- those that don’t affect the gene’s sequence of DNA but change the gene in other ways -- influence a wide variety of human diseases, including cancer, birth defects and psychiatric conditions. Epigenetic alterations include the turning off or quieting of genes that normally suppress cancer and the turning on of oncogenes to produce proteins that set off malignant behavior.

Epigenetic changes are found in normal cells of patients with cancer and are associated with cancer risk, Feinberg notes.

As one example, in a study published in the Feb. 24, 2005, online version of Science, Feinberg and colleagues in the United States, Sweden and Japan reported that mice engineered to have a double dose of insulin-like growth factor 2 (IGF2) had more primitive precursor cells in the lining of the colon than normal mice. When these mice also carried a colon-cancer-causing genetic mutation, they developed twice as many tumors as mice with normal IGF2 levels. The extra IGF2 stemmed not from a genetic problem, or mutation, but from an epigenetic problem that improperly turned on the copy of the IGF2 gene that should have remained off.

Feinberg and his colleagues propose that cancers develop via a three-step process. First, there is an epigenetic disruption of progenitor cells within an organ or tissue, altered by abnormal regulation of tumor-progenitor genes. This leads to a population of cells ready to cause new growth.

The second step involves an initiating mutation within the population of epigenetically disrupted progenitor cells at the earliest stages of new cell growth, such as the rearrangement of chromosomes in the development of leukemia. This mutation normally has been considered the first step in cancer development.

The third step is genetic and epigenetic instability, which leads to increased tumor evolution.

Many of the properties of advanced tumors, including the ability to spread, or metastasize, are inherent properties of the progenitor cells that give rise to the primary tumor, Feinberg notes. These properties do not necessarily require other mutations to occur.

"Greater attention should be paid to the apparently normal cells of patients with cancer or those at risk for cancer, as they might be crucial targets for epigenetic alteration and might be an important target for prevention and screening," he says.

Authors on the review are Andrew Feinberg of Johns Hopkins; Rolf Ohlsson of Uppsala University, Sweden; and Steven Henikoff of the Howard Hughes Medical Institute at the Fred Hutchinson Cancer Research Center.

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.nature.com/nrg/journal/v7/n1/full/nrg1748.html

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>