Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key brain antioxidant linked to Alzheimer’s and Parkinson’s

15.12.2005


EAAC1 protein is the main transporter of cysteine into neurons, providing vital antioxidant protection



A study conducted at the San Francisco VA Medical Center has identified a protein found in both mice and humans that appears to play a key role in protecting neurons from oxidative stress, a toxic process linked to neurodegenerative illnesses including Alzheimer’s and Parkinson’s diseases.

The study, led by Raymond Swanson, MD, chief of neurology and rehabilitation services at SFVAMC, identified the protein – known as EAAC1 in mice and as EAAT3 in humans – as the main mechanism through which the amino acid cysteine is transported into neurons. Cysteine is an essential component of glutathione, which Swanson terms "the most important antioxidant in the brain."


It had been thought previously that the main function of the protein was to remove excess glutamate, a neurotransmitter, from brain cells.

"It’s known that neurons don’t take up cysteine directly, and it’s never been clear exactly how it gets there," says Swanson, who is also professor and vice chair of neurology at the University of California, San Francisco. "This study provides the first evidence that EAAC1 is the mechanism by which cysteine gets into neurons – and that transporting cysteine is probably its chief function."

Study findings are currently available in the Advance Online Publication section of Nature Neuroscience.

Antioxidants such as glutathione provide protection from oxidative stress, which kills cells through the "uncontrolled reaction of lipids in the cells with oxygen--basically, burning them out," says Swanson. Since the brain uses a lot of oxygen and is "chock full of lipids," it is particularly vulnerable to oxidative stress, he notes.

In the first part of the study, Swanson and his co-authors observed a colony of mice deficient in the gene responsible for the production of EAAC1 and compared their behavior with that of a colony of normal, or "wild type," mice. They noticed that around the age of 11 months – old age for a mouse – the gene-deficient mice began to act listlessly, not groom themselves properly, and exhibit other signs of senility. In contrast, the wild type mice "looked and acted totally normal," according to Swanson.

Then, in postmortem examination, the researchers found that the brains of the EACC1-deficient mice had abnormally enlarged ventricles – openings within the brain that provide a path for cerebrospinal fluid – while the ventricles of the wild type mice were normal. Enlarged ventricles "also occur in Alzheimer’s patients," Swanson notes.

In addition, it was found that the EAAC1-deficient brains had fewer neurons in the hippocampus, and that all neurons in the hippocampus and cortex showed evidence of oxidative stress, unlike in the wild type mice.

The researchers then compared brain slices from younger mice in both groups. They found that it took ten times less hydrogen peroxide – a powerful oxidant – to kill slices from the EAAC1-deficient mice than it took to kill slices from the normal mice. This demonstrated that brains of mice unable to produce EAAC1 were ten times as vulnerable to oxidative stress as mice with the ability to produce EAAC1.

The researchers also found that the neurons of the EAAC1-deficient mice contained lower levels of the antioxidant glutathione compared to those of the normal mice.

Taken together, these results "support the idea that oxidative stress contributes to aging" in the brain, a well-known concept that Swanson calls "appealing," but difficult to prove or disprove. "This certainly adds credence to the idea," he says.

In the final part of the study, Swanson and his team investigated whether oxidative stress in EAAC1-deficient mice might be reversible.

For several days, a group of gene-deficient mice were fed N-acetylcysteine, an oral form of cysteine that is readily taken up by neurons. When their neuron slices were compared with slices from untreated gene-deficient mice, it was found that N-acetylcysteine "had completely corrected the biochemical defect" in their neurons, recounts Swanson. "Their glutathione levels were normal, their ability to withstand hydrogen peroxide toxicity was normal, and the oxidants we saw in the neurons in response to oxidative challenges were normal."

Based on the results of the current study, Swanson and his group are working to determine whether EAAC1 expression is altered in neurodegenerative illnesses such as Alzheimer’s and Parkinson’s diseases. Should this prove to be the case, says Swanson, then manipulation of EAAC1 levels "might provide a novel approach" to the treatment of these diseases in the future.

Steve Tokar | EurekAlert!
Further information:
http://www.ncire.org
http://www.ucsf.edu

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>