Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USC researchers track down the stem cells that create feathers

15.12.2005


Research, published in the journal Nature, may lead to insight on human organ regeneration



The stem cells that produce bird feathers have been visualized and analyzed for the first time, signifying the initial step in a scientific journey that may ultimately shed light on human organ regeneration.

The research, published in the December 15 issue of the journal Nature, was performed by a group of prominent stem-cell researchers from the Keck School of Medicine of the University of Southern California.


"What we found is that feather stem cells are distributed in a ring configuration around the inner wall of the vase-shaped feather follicle. This is different from hair stem cells, which are located in a bulge outside the follicle," explains Cheng-Ming Chuong, M.D., Ph.D., professor of pathology at the Keck School and principal investigator on this study.

Feather stem cells are of interest to scientists because of their profound regenerative abilities. A bird in nature molts twice a year. With more than 20,000 feathers on the average bird, Chuong notes, that means there are a lot of active, ongoing regenerative events in an adult bird.

Chuong and his USC colleagues identified epithelial stem cells within a chicken-feather follicle by giving the chickens water containing a non-radioactive label that was then incorporated and retained only in the putative epithelial stem cells. They showed that these cells were pluripotent-retaining the ability to differentiate into many different cell types-by taking the purported stem cells from quail-feather follicles and transplanting them into a chicken host. (Quail cells can be differentiated from chicken cells by cellular markers.) This demonstrated that only the labeled cells were pluripotent.

These stem cells, the researchers found, are well protected in the follicular base of each individual feather follicle. As they proliferate and differentiate, their progeny is displaced upward to create a feather. When the bird molts, the quill of the feather is dislodged from the follicle with a tapered proximal opening-the very feature that has historically made feathers so useful as writing implements-leaving behind a ring of stem cells for the creation of the next generation of feathers.

"The unique topological arrangement of stem cells, proliferating cells, and differentiating cells within the feather follicle allows for continuous growth, shedding, and regeneration of the entire organ," Chuong says.

Feathers are also of great interest to scientists due to their diverse shapes, each with its unique functional morphology. For example, the radially symmetric downy feathers found on chicks and on the trunks of adults are designed for warmth, while the bilaterally symmetric feathers found on the adult wing are designed for taking flight.

What Chuong and his colleagues found, to their surprise, was that the orientation of the ring of feather stem cells is related to the type of feather being generated: the stem cell ring is horizontally placed in radially symmetric downy feathers, but is tilted in bilaterally symmetric feathers, with the lower end of the ring on the anterior side of the follicle, where the rachis-the backbone of the feather-arises. In the Nature paper, Chuong postulates that it is this simple tilting that can transform feathers from radially symmetric to bilaterally symmetric morphologies by producing molecular gradients and/or asymmetric cell behaviors.

While this insight into the formation and regeneration of feathers is fascinating, it is the potential for application to human stem-cell studies that really motivates Chuong and his team.

"What we are really learning about is how stem cells are assembled into organs in nature. In this way, we can take advantage of the distinct patterns of the feather as a model to understand the fundamental principles of organ formation and regeneration," Chuong notes. "Nature is the best teacher for tissue engineering. What we decipher from our animal models can then be applied to help human stem cells and adult human organs to regenerate-and regenerate properly."

Jon Weiner | EurekAlert!
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>