Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USC researchers track down the stem cells that create feathers

15.12.2005


Research, published in the journal Nature, may lead to insight on human organ regeneration



The stem cells that produce bird feathers have been visualized and analyzed for the first time, signifying the initial step in a scientific journey that may ultimately shed light on human organ regeneration.

The research, published in the December 15 issue of the journal Nature, was performed by a group of prominent stem-cell researchers from the Keck School of Medicine of the University of Southern California.


"What we found is that feather stem cells are distributed in a ring configuration around the inner wall of the vase-shaped feather follicle. This is different from hair stem cells, which are located in a bulge outside the follicle," explains Cheng-Ming Chuong, M.D., Ph.D., professor of pathology at the Keck School and principal investigator on this study.

Feather stem cells are of interest to scientists because of their profound regenerative abilities. A bird in nature molts twice a year. With more than 20,000 feathers on the average bird, Chuong notes, that means there are a lot of active, ongoing regenerative events in an adult bird.

Chuong and his USC colleagues identified epithelial stem cells within a chicken-feather follicle by giving the chickens water containing a non-radioactive label that was then incorporated and retained only in the putative epithelial stem cells. They showed that these cells were pluripotent-retaining the ability to differentiate into many different cell types-by taking the purported stem cells from quail-feather follicles and transplanting them into a chicken host. (Quail cells can be differentiated from chicken cells by cellular markers.) This demonstrated that only the labeled cells were pluripotent.

These stem cells, the researchers found, are well protected in the follicular base of each individual feather follicle. As they proliferate and differentiate, their progeny is displaced upward to create a feather. When the bird molts, the quill of the feather is dislodged from the follicle with a tapered proximal opening-the very feature that has historically made feathers so useful as writing implements-leaving behind a ring of stem cells for the creation of the next generation of feathers.

"The unique topological arrangement of stem cells, proliferating cells, and differentiating cells within the feather follicle allows for continuous growth, shedding, and regeneration of the entire organ," Chuong says.

Feathers are also of great interest to scientists due to their diverse shapes, each with its unique functional morphology. For example, the radially symmetric downy feathers found on chicks and on the trunks of adults are designed for warmth, while the bilaterally symmetric feathers found on the adult wing are designed for taking flight.

What Chuong and his colleagues found, to their surprise, was that the orientation of the ring of feather stem cells is related to the type of feather being generated: the stem cell ring is horizontally placed in radially symmetric downy feathers, but is tilted in bilaterally symmetric feathers, with the lower end of the ring on the anterior side of the follicle, where the rachis-the backbone of the feather-arises. In the Nature paper, Chuong postulates that it is this simple tilting that can transform feathers from radially symmetric to bilaterally symmetric morphologies by producing molecular gradients and/or asymmetric cell behaviors.

While this insight into the formation and regeneration of feathers is fascinating, it is the potential for application to human stem-cell studies that really motivates Chuong and his team.

"What we are really learning about is how stem cells are assembled into organs in nature. In this way, we can take advantage of the distinct patterns of the feather as a model to understand the fundamental principles of organ formation and regeneration," Chuong notes. "Nature is the best teacher for tissue engineering. What we decipher from our animal models can then be applied to help human stem cells and adult human organs to regenerate-and regenerate properly."

Jon Weiner | EurekAlert!
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>