Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Chromosome four contains genes that affect drinking behaviors in smokers


  • Alcoholism is a complex behavior that draws from both environmental and genetic factors.
  • Researchers have found in a sample of smokers chromosomal regions that affect patterns of drinking behavior.
  • These findings support results from previous research that link alcohol metabolism genes on chromosomes two and four with alcohol consumption.

Researchers firmly believe that alcoholism is a complex behavior that draws from both environmental and genetic factors. A recent examination of families selected for their smoking behavior has identified the same region of chromosome four that was identified by earlier studies as being linked to the initiation of alcohol consumption. Results are published in the December issue of Alcoholism: Clinical & Experimental Research.

"It is commonly observed that people that drink also smoke and vice versa," explained Kirk C. Wilhelmsen, associate professor in the departments of genetics and neurology at the University of North Carolina as well as corresponding author for the study. "This suggested to us that families selected for smoking behavior would also have an increased incidence of drinking behavior."

"Twin studies of alcohol consumption have a long history and were the first to suggest the importance of genetic factors in alcohol use and alcoholism," added Gary E. Swan, director of the Center for Health Sciences at SRI International and also an author of the study. "The identification of linkages between specific genomic regions of interest and alcohol use and abuse is an area of science that has been active for about seven years. A consistent finding from these studies is the linkage between a region of chromosome four containing several genes that produce enzymes involved in the metabolism of alcohol and families with a high frequency of alcohol abuse."

Using data collected in an ongoing interdisciplinary study of environmental and genetic determinants of tobacco use conducted at the Oregon Research Institute under the direction of Dr. Hyman Hops, another author of the study, researchers examined 158 nuclear families that were determined to have at least two first-degree relatives who had smoked 100 or more cigarettes in their lifetime. Genotypes were determined from blood DNA taken from each family participant and analyzed for linkages to selected phenotypes.

"We looked for chromosome regions that had genes that affect patterns of drinking behavior," said Wilhelmsen. "The locations with the strongest evidence were the same places that were previously found in other linkage studies looking for loci that affect alcoholism, although we found evidence that these loci affect drinking behavior less severely than for alcoholism." Wilhelmsen is referring to one locus on chromosome two, and two loci on chromosome four.

"These findings are significant because the families in this study were selected by virtue of their use of tobacco rather than for excessive drinking and alcoholism, which have been the selection traits in previous linkage studies," said Swan. "Furthermore, the consistency of this result across study samples strongly suggests that variations in genes for alcohol metabolism play a role in determining who will go on to regular consumption of alcoholic beverages after initial exposure, and who is at risk for alcoholism."

"Our work provides evidence that variations in genes in a particular region affect drinking behavior," said Wilhelmsen, "which will encourage further work to identify the genes that are involved. When these genes are identified, and their normal function deduced, we will have a better understanding of the biology of drinking behavior. This may lead to new therapeutic approaches to treat alcoholism."

Swan concurs, however, he said that the study is suggestive rather than conclusive. "As with all studies of this sort, the findings need to be confirmed in other, nonclinical samples," he said. "The reader should also know that many genes are likely to be involved in alcoholism, and that genetic effects most likely interact with the effects of the environment to increase risk for alcohol abuse. The overall genetic signal observed in this study was modest which suggests the presence of other factors, both genetic and environmental in nature."

Wilhelmsen said that he and his colleagues have already begun to systematically search for DNA sequence changes in the same chromosome regions that affect drinking behavior.

Swan suggested that future research also include certain biological or physiological measures in the assessment of families. "This will help to more directly quantify alcohol metabolism along with specific measures of environmental risk such as stress," he said. "These measures can then be examined in linkage analyses to test the hypothesis that a metabolic substrate determines alcohol consumption and that environmental factors mediate the effects of genetic factors."

Kirk C. Wilhelmsen | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>