Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chromosome four contains genes that affect drinking behaviors in smokers

15.12.2005


  • Alcoholism is a complex behavior that draws from both environmental and genetic factors.
  • Researchers have found in a sample of smokers chromosomal regions that affect patterns of drinking behavior.
  • These findings support results from previous research that link alcohol metabolism genes on chromosomes two and four with alcohol consumption.

Researchers firmly believe that alcoholism is a complex behavior that draws from both environmental and genetic factors. A recent examination of families selected for their smoking behavior has identified the same region of chromosome four that was identified by earlier studies as being linked to the initiation of alcohol consumption. Results are published in the December issue of Alcoholism: Clinical & Experimental Research.



"It is commonly observed that people that drink also smoke and vice versa," explained Kirk C. Wilhelmsen, associate professor in the departments of genetics and neurology at the University of North Carolina as well as corresponding author for the study. "This suggested to us that families selected for smoking behavior would also have an increased incidence of drinking behavior."

"Twin studies of alcohol consumption have a long history and were the first to suggest the importance of genetic factors in alcohol use and alcoholism," added Gary E. Swan, director of the Center for Health Sciences at SRI International and also an author of the study. "The identification of linkages between specific genomic regions of interest and alcohol use and abuse is an area of science that has been active for about seven years. A consistent finding from these studies is the linkage between a region of chromosome four containing several genes that produce enzymes involved in the metabolism of alcohol and families with a high frequency of alcohol abuse."


Using data collected in an ongoing interdisciplinary study of environmental and genetic determinants of tobacco use conducted at the Oregon Research Institute under the direction of Dr. Hyman Hops, another author of the study, researchers examined 158 nuclear families that were determined to have at least two first-degree relatives who had smoked 100 or more cigarettes in their lifetime. Genotypes were determined from blood DNA taken from each family participant and analyzed for linkages to selected phenotypes.

"We looked for chromosome regions that had genes that affect patterns of drinking behavior," said Wilhelmsen. "The locations with the strongest evidence were the same places that were previously found in other linkage studies looking for loci that affect alcoholism, although we found evidence that these loci affect drinking behavior less severely than for alcoholism." Wilhelmsen is referring to one locus on chromosome two, and two loci on chromosome four.

"These findings are significant because the families in this study were selected by virtue of their use of tobacco rather than for excessive drinking and alcoholism, which have been the selection traits in previous linkage studies," said Swan. "Furthermore, the consistency of this result across study samples strongly suggests that variations in genes for alcohol metabolism play a role in determining who will go on to regular consumption of alcoholic beverages after initial exposure, and who is at risk for alcoholism."

"Our work provides evidence that variations in genes in a particular region affect drinking behavior," said Wilhelmsen, "which will encourage further work to identify the genes that are involved. When these genes are identified, and their normal function deduced, we will have a better understanding of the biology of drinking behavior. This may lead to new therapeutic approaches to treat alcoholism."

Swan concurs, however, he said that the study is suggestive rather than conclusive. "As with all studies of this sort, the findings need to be confirmed in other, nonclinical samples," he said. "The reader should also know that many genes are likely to be involved in alcoholism, and that genetic effects most likely interact with the effects of the environment to increase risk for alcohol abuse. The overall genetic signal observed in this study was modest which suggests the presence of other factors, both genetic and environmental in nature."

Wilhelmsen said that he and his colleagues have already begun to systematically search for DNA sequence changes in the same chromosome regions that affect drinking behavior.

Swan suggested that future research also include certain biological or physiological measures in the assessment of families. "This will help to more directly quantify alcohol metabolism along with specific measures of environmental risk such as stress," he said. "These measures can then be examined in linkage analyses to test the hypothesis that a metabolic substrate determines alcohol consumption and that environmental factors mediate the effects of genetic factors."

Kirk C. Wilhelmsen | EurekAlert!
Further information:
http://www.med.unc.edu
http://www.sri.com

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>