Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ASU researchers ’wire’ DNA to identify mutations

09.12.2005


A team of ASU researchers led by Nongjian Tao and Peiming Zhang has developed a new, breakthrough technique for the detection of DNA mutations.



Their results, published in the journal Proceedings of the National Academy of Sciences, demonstrate for the first time, the possibility of directly identifying these mutations, or single nucleotide polymorphisms (SNPs), by means of measuring the electrical conductance of a single DNA molecule.

SNPs are buried in the 3 billion DNA bases of the human genome. On average, SNPs occur about once in every 1,000 DNA bases, though not every SNP found will necessarily cause a disease mutation. Cataloging these subtle DNA differences among the populace will aid the ongoing quest to understand and prevent disease.


"There is a high demand to track mutations for cancer research or future applications in personalized medicine," said Zhang, an associate research professor of the Center for Single Molecule Biophysics in the Biodesign Institute at ASU. "Currently, the main issue in doing this type of detection is that it is still costly and time consuming."

The team’s breakthrough relies on an intrinsic physical property of DNA, conductivity, or how well the molecule can carry an electrical current. Depending on the experimental conditions, DNA has been previously shown to act as both a conductor and insulator.

"We have developed a technology that allows us to wire single molecules into an electrical circuit," said Tao, professor of electrical engineering in the Ira A. Fulton School of Engineering and also a researcher in the Center for Solid State Electronics Research. "We can now directly read the biological information in a single DNA molecule."

Measurement of DNA conductivity first requires wiring the molecule into an electrical circuit. "There are two things required to make a reliable measurement," said Tao. "One is that the DNA has to be tethered between two electrodes and the other is that it should be done in a slightly salty, water environment to minimize any perturbations to the structure of the molecule." Electrical engineering graduate students Joshua Hihath and Bingqian Xu carried out the measurement.

"We measure a small current through the molecules using a setup developed in our lab." said Tao. "It’s a conceptually simple setup. You just bring two electrodes together, separate them apart, make the measurement and repeat."

In the technique, chemical linker groups that form a tight bond with gold electrodes are attached to the ends of DNA. A drop of a DNA solution is then placed between the two electrodes. The DNA sticks to the surface of the electrodes spontaneously.

As the tip is pulled away and the two electrodes teased apart, the molecules of DNA are eventually dispersed to the point of measuring the current of a single DNA molecule.

For a proof of concept of the potential for measuring SNPs, the group used DNA of 11 or 12 bases in length dissolved in a physiologically relevant saline solution. From one electrode tip, a small current, or bias is used to probe the internal electronic states of DNA. By measuring the conductance, the team was able to understand the sequence information in the DNA and whether there was a mismatch in comparison to a normal DNA sequence.

What they found was that just a single base pair mutation in a DNA molecule, such as substituting an A for a G, can cause a significant change in the conductance of the molecule. The measurement is extremely sensitive, as the alteration of a single base in the DNA stack can either increase or decrease the conductivity of a DNA helix, depending on the type of mismatched base.

Not only was the group the first measure SNPs in this manner, but they were also the first to make the measurement in a water environment relevant to that found in biological systems.

How the current flows through the DNA molecule is still a subject of speculation. "One idea is that there is a tunneling process," said Tao.

The DNA has properties which make the electrons easier to tunnel through, just like lowering a hill for a marathon runner.

"The other may be a charge-hopping phenomenon, where the electrons get trapped in the DNA and then hop from the electrode to the DNA to the second electrode."

The next goal of the research is to make the measurement steps easier and faster through automation, which will allow many different DNA sequences to be analyzed at once.

Joe Caspermeyer | EurekAlert!
Further information:
http://www.asu.edu
http://www.fulton.asu.edu
http://www.biodesign.org

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>