Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ASU researchers ’wire’ DNA to identify mutations

09.12.2005


A team of ASU researchers led by Nongjian Tao and Peiming Zhang has developed a new, breakthrough technique for the detection of DNA mutations.



Their results, published in the journal Proceedings of the National Academy of Sciences, demonstrate for the first time, the possibility of directly identifying these mutations, or single nucleotide polymorphisms (SNPs), by means of measuring the electrical conductance of a single DNA molecule.

SNPs are buried in the 3 billion DNA bases of the human genome. On average, SNPs occur about once in every 1,000 DNA bases, though not every SNP found will necessarily cause a disease mutation. Cataloging these subtle DNA differences among the populace will aid the ongoing quest to understand and prevent disease.


"There is a high demand to track mutations for cancer research or future applications in personalized medicine," said Zhang, an associate research professor of the Center for Single Molecule Biophysics in the Biodesign Institute at ASU. "Currently, the main issue in doing this type of detection is that it is still costly and time consuming."

The team’s breakthrough relies on an intrinsic physical property of DNA, conductivity, or how well the molecule can carry an electrical current. Depending on the experimental conditions, DNA has been previously shown to act as both a conductor and insulator.

"We have developed a technology that allows us to wire single molecules into an electrical circuit," said Tao, professor of electrical engineering in the Ira A. Fulton School of Engineering and also a researcher in the Center for Solid State Electronics Research. "We can now directly read the biological information in a single DNA molecule."

Measurement of DNA conductivity first requires wiring the molecule into an electrical circuit. "There are two things required to make a reliable measurement," said Tao. "One is that the DNA has to be tethered between two electrodes and the other is that it should be done in a slightly salty, water environment to minimize any perturbations to the structure of the molecule." Electrical engineering graduate students Joshua Hihath and Bingqian Xu carried out the measurement.

"We measure a small current through the molecules using a setup developed in our lab." said Tao. "It’s a conceptually simple setup. You just bring two electrodes together, separate them apart, make the measurement and repeat."

In the technique, chemical linker groups that form a tight bond with gold electrodes are attached to the ends of DNA. A drop of a DNA solution is then placed between the two electrodes. The DNA sticks to the surface of the electrodes spontaneously.

As the tip is pulled away and the two electrodes teased apart, the molecules of DNA are eventually dispersed to the point of measuring the current of a single DNA molecule.

For a proof of concept of the potential for measuring SNPs, the group used DNA of 11 or 12 bases in length dissolved in a physiologically relevant saline solution. From one electrode tip, a small current, or bias is used to probe the internal electronic states of DNA. By measuring the conductance, the team was able to understand the sequence information in the DNA and whether there was a mismatch in comparison to a normal DNA sequence.

What they found was that just a single base pair mutation in a DNA molecule, such as substituting an A for a G, can cause a significant change in the conductance of the molecule. The measurement is extremely sensitive, as the alteration of a single base in the DNA stack can either increase or decrease the conductivity of a DNA helix, depending on the type of mismatched base.

Not only was the group the first measure SNPs in this manner, but they were also the first to make the measurement in a water environment relevant to that found in biological systems.

How the current flows through the DNA molecule is still a subject of speculation. "One idea is that there is a tunneling process," said Tao.

The DNA has properties which make the electrons easier to tunnel through, just like lowering a hill for a marathon runner.

"The other may be a charge-hopping phenomenon, where the electrons get trapped in the DNA and then hop from the electrode to the DNA to the second electrode."

The next goal of the research is to make the measurement steps easier and faster through automation, which will allow many different DNA sequences to be analyzed at once.

Joe Caspermeyer | EurekAlert!
Further information:
http://www.asu.edu
http://www.fulton.asu.edu
http://www.biodesign.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>