Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TLR4 gene found to protect against tumor development

09.12.2005


A new study finds that a gene which plays an important role in immune function, known as toll-like receptor 4 (TLR4), may also play a critical role in suppressing chronic lung inflammation and tumor development in mice.



"We know that chronic inflammation predisposes people to many types of cancer," says NIH Director Elias Zerhouni, M.D. "By using this new information we may be able to suppress chronic inflammation and reduce our Nation’s cancer burden."

In the December 7, 2005 issue of the Journal of the National Cancer Institute, researchers at the National Institute of Environmental Health Sciences (NIEHS), a part of the National Institutes of Health, report that mice prone to lung cancer that had TLR4 removed or altered had 60 percent more tumors than mice that had intact receptors, illustrating a new protective role for this gene. There were no differences in overall tumor size or structure between the mice. TLR4 is part of what immunologists refer to as the "innate immune system" which acts as the body’s first line of defense against harmful substances.


Researchers explain the immune system actually is comprised of two components or systems, the innate and the acquired. The innate system can be thought of as the way the body is naturally programmed to respond, forming the front line of defense against infection. The acquired depends on the development of antibodies and other systems to recognize pathogens and other foreign objects that might upset the body’s ability to fight off diseases. Understanding more about how the innate system works will help inform how the more complex, acquired system works.

"We have recently learned a lot about TLR4, its different mutations, and the role they play in immunity," said David A. Schwartz, MD, the NIEHS Director, "but discovering this novel function of TLR4 in tumor biology may provide new therapeutic targets for many chronic diseases, including cancer."

"We can’t attribute the number of tumors per mouse to TLR4 alone, but it accounts for a significant portion of it," said Steven Kleeberger, Ph.D., Chief, Laboratory of Respiratory Biology at NIEHS, where the research was conducted. The researchers administered a preservative known to cause lung inflammation to the mice to determine the role of TLR4 in inflammation. Primary tumor formation also was measured in mice known to have cancer. Mice with both functional and altered TLR4 were used in all protocols.

"TLR4 acts like a brake of a car," Kleeberger said. "If you take the brake or receptor away, you see more increases in tumor development, more inflammation and more mortality

Previous research indicated an association between chronic lung inflammation and lung cancer, but the mechanisms are not well understood. Chronic bronchitis and asthma, for example, are known to heighten the risk of lung cancer. Inflammation has been implicated as a contributing factor in several human cancers, including lung cancer. Therefore, researchers wanted to see if one of the well known receptors in the immune system, the TLR4, played a role in the development of cancer in an animal model.

"What we found is the innate immune system, particularly TLR4, plays a critical role in protecting against the development of tumors and chronic inflammation," said Alison Bauer, Ph.D., of NIEHS and lead author on the paper. "It suggests that targeting the innate immune system may be a useful tool in fighting a variety of human diseases, including cancer."

"This mouse model provides us with the rationale to ask whether the innate immune system might be involved in lung cancer in humans," said Dr. Schwartz. "We are clearly finding that a better understanding of innate immunity will provide us with new ways to fight off many diseases."

Robin Mackar | EurekAlert!
Further information:
http://www.niehs.nih.gov
http://www.niehs.nih.gov/home.htm.

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>