Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How do boxers differ from poodles? Researchers collar genomes

08.12.2005


As any dog lover knows, no two breeds are identical. Some dogs are perfect for sloppy kisses. Others make fierce guardians. Still others resemble tiny, fluffy toys. Now, two new studies by scientists at The Institute for Genomic Research (TIGR) and collaborators reveal the genomic differences beneath such canine characteristics.



In the December issue of Genome Research--a special issue devoted to dog genomes--TIGR researchers Ewen Kirkness and Wei Wang compared the genome sequences of two dogs, a standard poodle and a boxer. Finding key genetic differences between the two dogs, the researchers went on to compare those telltale genetic variations in the genomes from nine additional dog breeds--beagle, Labrador retriever, German shepherd, Italian greyhound, English shepherd, Bedlington terrier, Portuguese water dog, Alaskan malamute, and rottweiler--and five genomes of wild canids (four types of wolves and a coyote).

"This work demonstrates a significant amount of variation that you can see between individual dogs at the genomic level," says Kirkness, lead investigator of the project, funded by TIGR. "That variation can now be exploited to study the differences between dogs, their diseases, development and behaviors." More broadly, Kirkness adds, the comparisons illustrate evolutionary influences that can shape mammalian genomes.


In the study, the scientists first compared the two most complete canine genomes available. Those genomes belong to Shadow, a standard poodle whose genome was published by TIGR in 2003, and Tasha, a boxer sequenced by the Broad Institute of Cambridge, Massachusetts, in 2004.

To compare Shadow’s and Tasha’s genomes, the researchers tracked short interspersed elements (SINEs)--stretches of DNA that occur randomly in the genomes of many organisms. SINEs are inserted near or within genes, often turning the expression of those genes up, down or even off. The scientists found that the poodle and boxer differed in their content of SINEs at 10,562 locations in their genomes. Broadening the study to compare SINEs among the additional nine dog breeds and five wild canids, the scientists estimated that the overall dog population contains at least 20,000 SINE differences.

To genomics researchers, variable SINEs can act as signposts for specific genes linked to disease or traits. The dog is a unique genomics model. Through selective breeding of dogs, humans have created the highest degree of physical and behavioral differences seen within a species. Roughly 400 dog breeds exist, with specific breeds predisposed to heart disease, cancer, blindness, deafness and other common disorders. Identifying genes responsible for diseases or physical traits may be easier to do in dogs that have been genetically selected.

In a second study, published in the December 8 issue of Nature, researchers from 15 institutions describe a high-resolution draft of the boxer genome. This work includes a high resolution map of canine single nucleotide polymorphisms (SNPs), based largely on a comparison of the boxer and poodle sequences. Eventually, Kirkness predicts, efforts to document genetic differences between dogs will lead to major health gains for the animals. And perhaps us, too: A dog genome is estimated to include some 19,300 genes--nearly all corresponding to similar human genes.

Kathryn Brown | EurekAlert!
Further information:
http://www.tigr.org

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>