Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A salty tale: New bacterial genome sequenced from ancient salterns

07.12.2005


Tourists in Spain often stop to ogle the country’s many saltwater lagoons, used to produce salt since Roman times. Scientists, too, admire these saltern crystallizers--and even more so, the microbes that manage to survive in such briny environs. Now, reporting in the November 28-December 2 early online edition of the Proceedings of the National Academy of Sciences, researchers at The Institute for Genomic Research and collaborators reveal the genome of one bacterium at home in the salty Spanish ponds.

The bacterium is Salinibacter ruber, a bright red, rod-shaped organism. Several years ago, scientists first isolated S. ruber from saltern crystallizer ponds in Alicante and Mallorca, Spain. Although extreme-loving microbes called archaea were known to eke out life in the ponds, scientists were surprised to discover ordinary bacteria also thriving in such a physically demanding environment, at salt concentrations up to 30 percent. How could these microbes--which normally prefer milder environments--thrive in such high salt?

To find out, TIGR researchers Emmanuel Mongodin and Karen Nelson, working with Canadian and Spanish colleagues, set out to sequence S. ruber’s genome. In doing so, the scientists discovered evidence that the resourceful bacterium independently evolved some salt-surviving biochemistry. More surprising, S. ruber apparently also borrowed some genes from neighboring archaeal species, in an unusual example of cross-domain lateral gene transfer.



"Scientists are increasingly learning how microbes adapt to harsh environments," remarks Mongodin, first author on the PNAS study, funded by a grant from the National Science Foundation and United States Department of Agriculture. "S. ruber illustrates that even in a really extreme environment, bacteria can do what it takes to survive, including exchanging genes with other microbial species that we might not expect."

Normally, high-salt environments denature bacterial proteins. To survive, S. ruber must maintain a high concentration of potassium inside its cytoplasm, keeping an osmotic balance against the high sodium chloride concentration outside. That’s where evolutionary strategy comes in.

Analyzing the bacterium’s genome, researchers found that S. ruber’s proteins are typically rich in acidic amino acids and relatively poor in hydrophobic (water-repellent) amino acids, making them soluble and highly stable at such salt concentrations. Researchers recognized this biochemical adaptation: it’s the same one used by archaea also living in the salterns.

That wasn’t the only similarity. Scientists also found two types of rhodopsin genes: one variety typical for bacteria, and another previously recognized in archaea. A photosynthetic protein, rhodopsin works as a proton pump, capturing light energy and using it to move protons across the membrane and out of the cell. In doing so, the protein maintains a balance of ions inside and outside the cell.

"It’s very unusual to find the two different types of rhodopsin in the same organism," Mongodin says. "S. ruber may have independently evolved one type of rhodopsin and acquired the other through lateral gene transfer from the archaeal species also living in the salterns." This study is the first to document bacteria adopting the archaeal-type rhodopsin. The two systems may work at different wavelengths, expanding S. ruber’s ability to thrive in this environment. Alternatively, Mongodin says, the double system may be redundant, a kind of biological back-up.

Because S. ruber grows in high salt, its enzymes are strikingly stable. And that means the bacterium may hold promise for industrial applications. Meanwhile, TIGR’s collaborators are pursuing studies of Spain’s salterns, testing the ponds to find out what other microbes call the briny waters home. "How much diversity is there?" Mongodin asks. "We’ll all be interested to learn."

Kathryn Brown | EurekAlert!
Further information:
http://www.tigr.org/

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>