Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A salty tale: New bacterial genome sequenced from ancient salterns

07.12.2005


Tourists in Spain often stop to ogle the country’s many saltwater lagoons, used to produce salt since Roman times. Scientists, too, admire these saltern crystallizers--and even more so, the microbes that manage to survive in such briny environs. Now, reporting in the November 28-December 2 early online edition of the Proceedings of the National Academy of Sciences, researchers at The Institute for Genomic Research and collaborators reveal the genome of one bacterium at home in the salty Spanish ponds.

The bacterium is Salinibacter ruber, a bright red, rod-shaped organism. Several years ago, scientists first isolated S. ruber from saltern crystallizer ponds in Alicante and Mallorca, Spain. Although extreme-loving microbes called archaea were known to eke out life in the ponds, scientists were surprised to discover ordinary bacteria also thriving in such a physically demanding environment, at salt concentrations up to 30 percent. How could these microbes--which normally prefer milder environments--thrive in such high salt?

To find out, TIGR researchers Emmanuel Mongodin and Karen Nelson, working with Canadian and Spanish colleagues, set out to sequence S. ruber’s genome. In doing so, the scientists discovered evidence that the resourceful bacterium independently evolved some salt-surviving biochemistry. More surprising, S. ruber apparently also borrowed some genes from neighboring archaeal species, in an unusual example of cross-domain lateral gene transfer.



"Scientists are increasingly learning how microbes adapt to harsh environments," remarks Mongodin, first author on the PNAS study, funded by a grant from the National Science Foundation and United States Department of Agriculture. "S. ruber illustrates that even in a really extreme environment, bacteria can do what it takes to survive, including exchanging genes with other microbial species that we might not expect."

Normally, high-salt environments denature bacterial proteins. To survive, S. ruber must maintain a high concentration of potassium inside its cytoplasm, keeping an osmotic balance against the high sodium chloride concentration outside. That’s where evolutionary strategy comes in.

Analyzing the bacterium’s genome, researchers found that S. ruber’s proteins are typically rich in acidic amino acids and relatively poor in hydrophobic (water-repellent) amino acids, making them soluble and highly stable at such salt concentrations. Researchers recognized this biochemical adaptation: it’s the same one used by archaea also living in the salterns.

That wasn’t the only similarity. Scientists also found two types of rhodopsin genes: one variety typical for bacteria, and another previously recognized in archaea. A photosynthetic protein, rhodopsin works as a proton pump, capturing light energy and using it to move protons across the membrane and out of the cell. In doing so, the protein maintains a balance of ions inside and outside the cell.

"It’s very unusual to find the two different types of rhodopsin in the same organism," Mongodin says. "S. ruber may have independently evolved one type of rhodopsin and acquired the other through lateral gene transfer from the archaeal species also living in the salterns." This study is the first to document bacteria adopting the archaeal-type rhodopsin. The two systems may work at different wavelengths, expanding S. ruber’s ability to thrive in this environment. Alternatively, Mongodin says, the double system may be redundant, a kind of biological back-up.

Because S. ruber grows in high salt, its enzymes are strikingly stable. And that means the bacterium may hold promise for industrial applications. Meanwhile, TIGR’s collaborators are pursuing studies of Spain’s salterns, testing the ponds to find out what other microbes call the briny waters home. "How much diversity is there?" Mongodin asks. "We’ll all be interested to learn."

Kathryn Brown | EurekAlert!
Further information:
http://www.tigr.org/

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>