Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Stanford tool for genetic data analysis may improve cancer treatment

06.12.2005


Statistics isn’t what normally comes to mind what people think of cancer research, but a new statistical tool developed at the Stanford University School of Medicine could smooth out some of the fits and starts that have plagued the effort to understand and treat the disease.



The tool is at the heart of a new study that divides similar-looking kidney tumors into subtypes depending on which of thousands of genes are turned on or off. The idea behind this and related studies of other types of cancer published over the past five years is that doctors can use the information to decide the most appropriate treatment strategy for each patient. Targeting the treatment to a patient’s specific cancer means quicker treatment and fewer side effects. Sounds good, right?

The problem is that in many cases the subtypes that turn up in one analysis are absent in follow-up studies, rendering this work clinically irrelevant. The new way of analyzing these cancer studies, published online in the Dec. 5 Public Library of Science-Medicine, should minimize these setbacks and help turn cancer research into cancer cures.


Robert Tibshirani, PhD, professor of health research and policy and of statistics, said part of the problem lies in how the scientists analyze the data. "A lot of people have applied old statistical tools to new data, and they don’t necessarily work," he said. The type of studies in question, called microarray studies, generates a veritable haystack of data. Most researchers search for genetic needles in that haystack. Sometimes they find the needles, but sometimes they accidentally mistake hay for a needle, confusing the entire field.

Tibshirani and his colleagues got into a debate in the pages of the New England Journal of Medicine in March over one such study that Tibshirani said used flawed statistical methods and therefore generated interesting but false conclusions. Tibshirani said his new tools for analyzing the data would help eliminate these misleading studies in the future and help the community of cancer researchers to focus on the most relevant data. He said the new tool he and his colleagues developed looks for larger groups of genes - equivalent to searching for pitchforks rather than needles - and therefore are more likely to turn up again in future studies. These groups represent biological pathways that are characteristically active or inactive within tumors.

In the first test of Tibshirani’s new tool, he and his colleagues James Brooks, MD, associate professor of urology, and Hongjuan Zhao, PhD, research associate, studied the most common form of kidney cancer, called renal cell carcinoma. This cancer kills nearly 95,000 people worldwide each year.

Brooks and Zhao analyzed the genes that were turned on or off in kidney tumors removed by their collaborators at Umea University in Sweden. Using Tibshirani’s approach they found 259 interesting genes. Whether these genes were being actively used by a particular cancer could reveal whether that cancer was likely to spread aggressively and need more vigorous treatment.

"Picking out who has a more or less aggressive cancer can help us decide how to follow that patient once we treat them," Brooks said. For example, somebody who has a less aggressive cancer may need fewer CAT scans after surgery. That would save the patient from needing to come to the hospital regularly for tests, prevent any problems from excessive exposure to radiation during the CAT scans and save money. Likewise, the information could help identify patients who need very aggressive treatment beyond surgery alone, Brooks said.

Eventually the group wants to narrow those 259 genes to a smaller subset that can accurately distinguish between cancers. Tibshirani said that he could only have developed this statistical tool at Stanford, where he can work closely with colleagues like Brooks and Zhao who are actively using microarrays to study cancer. "I think that our collaboration is an excellent example of Stanford’s strength in translational medicine," he said. Tibshirani, whose expertise is in biostatistics, said he needs input from cancer surgeons and researchers in order to tweak his statistical programs effectively.

The tool Tibshirani and his colleagues developed is now available to other researchers carrying out similar analyses. He hopes the tool catches on with researchers in the field and helps prevent some of the misleading studies that have been published in the past.

Amy Adams | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>