Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Stanford tool for genetic data analysis may improve cancer treatment

06.12.2005


Statistics isn’t what normally comes to mind what people think of cancer research, but a new statistical tool developed at the Stanford University School of Medicine could smooth out some of the fits and starts that have plagued the effort to understand and treat the disease.



The tool is at the heart of a new study that divides similar-looking kidney tumors into subtypes depending on which of thousands of genes are turned on or off. The idea behind this and related studies of other types of cancer published over the past five years is that doctors can use the information to decide the most appropriate treatment strategy for each patient. Targeting the treatment to a patient’s specific cancer means quicker treatment and fewer side effects. Sounds good, right?

The problem is that in many cases the subtypes that turn up in one analysis are absent in follow-up studies, rendering this work clinically irrelevant. The new way of analyzing these cancer studies, published online in the Dec. 5 Public Library of Science-Medicine, should minimize these setbacks and help turn cancer research into cancer cures.


Robert Tibshirani, PhD, professor of health research and policy and of statistics, said part of the problem lies in how the scientists analyze the data. "A lot of people have applied old statistical tools to new data, and they don’t necessarily work," he said. The type of studies in question, called microarray studies, generates a veritable haystack of data. Most researchers search for genetic needles in that haystack. Sometimes they find the needles, but sometimes they accidentally mistake hay for a needle, confusing the entire field.

Tibshirani and his colleagues got into a debate in the pages of the New England Journal of Medicine in March over one such study that Tibshirani said used flawed statistical methods and therefore generated interesting but false conclusions. Tibshirani said his new tools for analyzing the data would help eliminate these misleading studies in the future and help the community of cancer researchers to focus on the most relevant data. He said the new tool he and his colleagues developed looks for larger groups of genes - equivalent to searching for pitchforks rather than needles - and therefore are more likely to turn up again in future studies. These groups represent biological pathways that are characteristically active or inactive within tumors.

In the first test of Tibshirani’s new tool, he and his colleagues James Brooks, MD, associate professor of urology, and Hongjuan Zhao, PhD, research associate, studied the most common form of kidney cancer, called renal cell carcinoma. This cancer kills nearly 95,000 people worldwide each year.

Brooks and Zhao analyzed the genes that were turned on or off in kidney tumors removed by their collaborators at Umea University in Sweden. Using Tibshirani’s approach they found 259 interesting genes. Whether these genes were being actively used by a particular cancer could reveal whether that cancer was likely to spread aggressively and need more vigorous treatment.

"Picking out who has a more or less aggressive cancer can help us decide how to follow that patient once we treat them," Brooks said. For example, somebody who has a less aggressive cancer may need fewer CAT scans after surgery. That would save the patient from needing to come to the hospital regularly for tests, prevent any problems from excessive exposure to radiation during the CAT scans and save money. Likewise, the information could help identify patients who need very aggressive treatment beyond surgery alone, Brooks said.

Eventually the group wants to narrow those 259 genes to a smaller subset that can accurately distinguish between cancers. Tibshirani said that he could only have developed this statistical tool at Stanford, where he can work closely with colleagues like Brooks and Zhao who are actively using microarrays to study cancer. "I think that our collaboration is an excellent example of Stanford’s strength in translational medicine," he said. Tibshirani, whose expertise is in biostatistics, said he needs input from cancer surgeons and researchers in order to tweak his statistical programs effectively.

The tool Tibshirani and his colleagues developed is now available to other researchers carrying out similar analyses. He hopes the tool catches on with researchers in the field and helps prevent some of the misleading studies that have been published in the past.

Amy Adams | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>