Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The role of Type II Collagen in rheumatoid arthritis

05.12.2005


Study sheds new light on this critical protein’s involvement in autoimmunity and chronic, corrosive joint inflammation



Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation of the joints, which gradually erodes the cartilage and bone. The agents of destruction include inflammatory cells, cytokines, and protein-degrading enzymes known as matrix metalloproteinases (MMPs). The vicious cycle begins when inflammatory cells infiltrate the tissue lining the joints and consume excess oxygen. In addition to unleashing MMPs, the oxidative stress provokes non-enzymatic glycation – a chemical binding of sugar molecules and proteins. Telltale signs of glycation have been found in blood, urine, and synovial fluid of RA patients.

The primary protein in cartilage, Type II Collagen (CII) is crucial to joint health and function. Yet, the involvement of CII in the process of joint inflammation has proven difficult to substantiate. To gain a clearer understanding of CII’s role in the pathogenesis of RA, researchers at Queen Mary, University of London and others studied its behavior within an inflamed joint, when modified by oxidants linked to inflammation or by ribose, a five-carbon sugar common to all living cells. Featured in the December 2005 issue of Arthritis & Rheumatism, their findings support CII’s potential contribution to antibody binding and RA’s devastating progression.


For their investigation, the researchers collected blood serum samples from 31 RA patients. Between the ages of 65 to 93 years, the patients had disease in varying stages and were receiving different treatments. For control purposes, serum samples were also collected from 41 patients with other inflammatory joint diseases, including osteoarthritis and lupus, as well as back pain, osteoporosis, and gout. Both RA and non-RA samples were analyzed for their ability to bind to pure and natural CII, obtained from bovine cartilage, and to CII that had been chemically modified. The modified CII included three oxidants present in the rheumatic joint – hydroxyl radical, hypochlorous acid, and peroxynitrite – and ribose. The results were evaluated by a state-of-the-art 3-D fluorescent profile, followed by enzyme-linked immunosorbant assay (ELISA) and Western blotting.

Of the 31 RA serum samples analyzed, only 3 showed antibody binding to natural CII – affirming this protein as an innocent bystander in autoimmunity and its inflammatory toll on the joints. However, the percentage of samples that exhibited antibody binding increased 4-fold when tested with modified CII. In fact, 45 percent of all RA samples were assessed with moderate to strong antibody binding reactions. CII treated with hypochlorous acid was the most reactive, followed by CII treated with peroxynitrite, glycation, and hydroxyl radical, respectively. In contrast, only 1 non-RA sample showed strong antibody binding to modified CII.

"The present findings support the possibility that chemical modification of self antigens, in RA in particular and in inflammation in general, is the cause of formation of neoepitopes," reflects the study’s leading author, Ahuva Nissim, Ph.D. "We propose that the oxidative modification of CII creates a CII autoantigen." This hypothesis has important implications for the further study and enhanced understanding of the pathology of RA – a complex autoimmune disease.

Amy Molnar | EurekAlert!
Further information:
http://www.interscience.wiley.com/journal/arthritis

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>