Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transporters for the brain chemical serotonin provide

30.11.2005


Forsyth Study Also Provides Insight to Possible Complications from Serotonin Blocking Drugs



Researchers at The Forsyth Institute have discovered that the transport mechanisms for serotonin — the chemical substance involved in transmitting signals between neurons, and which has a role in anxiety and mood disorders — play a key role in determining where organs are positioned in the body during embryonic development. Transporters bring serotonin into cells. The research team, led by Dr. Michael Levin, found that when the transport of serotonin into cells was blocked, normal development was disrupted in frog and chick embryos.

In particular, left-right asymmetry, the process through which cells “know” which side they are on as they form body organs such as the heart and liver, is controlled by serotonin transporters. Michael Levin, PhD., Associate Member of the Staff, conducted his research with substances commonly used to treat mood disorders in humans including the drug Prozac. These drugs address chemical imbalances in the brain by blocking serotonin’s removal from the space between neurons.


“With this research, we’ve not only identified a novel role of the serotonin transporters, in contributing to left-right asymmetry, but have also confirmed that serotonin has a role in cells other than neurons,” Levin said. “This raises interesting questions related to embryonic development and also about the possible subtle side-effects of serotonin-related drugs like the selective serotonin reuptake inhibitors (SSRI antidepressants such as Prozac and Zoloft) or the monoamine oxidase inhibitors (MAOIs).”

This study, published in the most recent issue of Developmental Neuroscience, has ramifications for neuroscience, developmental genetics, evolutionary biology and, possibly teratology (a branch of pathology and embryology concerned with abnormal development and congenital malformations).

In previous studies, Dr. Levin found that frog embryos contain a supply of serotonin provided in the egg by the mother. This maternal serotonin functions during the first few cell divisions and then is degraded by an enzyme, monoamine oxidase, which has many important functions in human neurobiology. Chick embryos, on the other hand, synthesize their own serotonin shortly after fertilization. Though details differ, both species utilize serotonin signaling as a patterning mechanism long before the appearance of the nervous system, suggesting that this novel role for serotonin signaling may be conserved in a number of different species.

While the previous study demonstrated the importance of serotonin receptors, which sense serotonin present outside cells, the latest work showed that the transport of serotonin into cells is also crucial. This highlights the importance of dynamic serotonin movement as part of cellular cross-talk, and also suggests that there are important functions for serotonin inside of cells about which we know very little. The future characterization of these internal serotonin targets represents an exciting and fruitful area for basic biology and drug development.

Michael Levin, Ph.D. is Associate Member of the Staff, is an Associate Member of the Staff in The Forsyth Institute Department of Cytokine Biology. Through experimental approaches and mathematical modeling, Dr. Levin and his team examine the processes governing large-scale pattern formation and biological information storage during embryonic development. The lab’s investigations are directed toward understanding the mechanisms of signaling between cells and tissues that allows a biological system to reliably generate and maintain a complex morphology. The Levin team studies these processes in the context of embryonic development and regeneration, with a particular focus on the biophysics of cell behavior.

The Forsyth Institute is an independent, nonprofit research organization focused on oral, craniofacial and related biomedical science.

Jennifer Kelly | EurekAlert!
Further information:
http://www.forsyth.org

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>