Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transporters for the brain chemical serotonin provide

30.11.2005


Forsyth Study Also Provides Insight to Possible Complications from Serotonin Blocking Drugs



Researchers at The Forsyth Institute have discovered that the transport mechanisms for serotonin — the chemical substance involved in transmitting signals between neurons, and which has a role in anxiety and mood disorders — play a key role in determining where organs are positioned in the body during embryonic development. Transporters bring serotonin into cells. The research team, led by Dr. Michael Levin, found that when the transport of serotonin into cells was blocked, normal development was disrupted in frog and chick embryos.

In particular, left-right asymmetry, the process through which cells “know” which side they are on as they form body organs such as the heart and liver, is controlled by serotonin transporters. Michael Levin, PhD., Associate Member of the Staff, conducted his research with substances commonly used to treat mood disorders in humans including the drug Prozac. These drugs address chemical imbalances in the brain by blocking serotonin’s removal from the space between neurons.


“With this research, we’ve not only identified a novel role of the serotonin transporters, in contributing to left-right asymmetry, but have also confirmed that serotonin has a role in cells other than neurons,” Levin said. “This raises interesting questions related to embryonic development and also about the possible subtle side-effects of serotonin-related drugs like the selective serotonin reuptake inhibitors (SSRI antidepressants such as Prozac and Zoloft) or the monoamine oxidase inhibitors (MAOIs).”

This study, published in the most recent issue of Developmental Neuroscience, has ramifications for neuroscience, developmental genetics, evolutionary biology and, possibly teratology (a branch of pathology and embryology concerned with abnormal development and congenital malformations).

In previous studies, Dr. Levin found that frog embryos contain a supply of serotonin provided in the egg by the mother. This maternal serotonin functions during the first few cell divisions and then is degraded by an enzyme, monoamine oxidase, which has many important functions in human neurobiology. Chick embryos, on the other hand, synthesize their own serotonin shortly after fertilization. Though details differ, both species utilize serotonin signaling as a patterning mechanism long before the appearance of the nervous system, suggesting that this novel role for serotonin signaling may be conserved in a number of different species.

While the previous study demonstrated the importance of serotonin receptors, which sense serotonin present outside cells, the latest work showed that the transport of serotonin into cells is also crucial. This highlights the importance of dynamic serotonin movement as part of cellular cross-talk, and also suggests that there are important functions for serotonin inside of cells about which we know very little. The future characterization of these internal serotonin targets represents an exciting and fruitful area for basic biology and drug development.

Michael Levin, Ph.D. is Associate Member of the Staff, is an Associate Member of the Staff in The Forsyth Institute Department of Cytokine Biology. Through experimental approaches and mathematical modeling, Dr. Levin and his team examine the processes governing large-scale pattern formation and biological information storage during embryonic development. The lab’s investigations are directed toward understanding the mechanisms of signaling between cells and tissues that allows a biological system to reliably generate and maintain a complex morphology. The Levin team studies these processes in the context of embryonic development and regeneration, with a particular focus on the biophysics of cell behavior.

The Forsyth Institute is an independent, nonprofit research organization focused on oral, craniofacial and related biomedical science.

Jennifer Kelly | EurekAlert!
Further information:
http://www.forsyth.org

More articles from Life Sciences:

nachricht Maelstroms in the heart
22.02.2018 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Decoding the structure of the huntingtin protein
22.02.2018 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Decoding the structure of the huntingtin protein

22.02.2018 | Life Sciences

Camera technology in vehicles: Low-latency image data compression

22.02.2018 | Information Technology

Minimising risks of transplants

22.02.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>