Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transporters for the brain chemical serotonin provide

30.11.2005


Forsyth Study Also Provides Insight to Possible Complications from Serotonin Blocking Drugs



Researchers at The Forsyth Institute have discovered that the transport mechanisms for serotonin — the chemical substance involved in transmitting signals between neurons, and which has a role in anxiety and mood disorders — play a key role in determining where organs are positioned in the body during embryonic development. Transporters bring serotonin into cells. The research team, led by Dr. Michael Levin, found that when the transport of serotonin into cells was blocked, normal development was disrupted in frog and chick embryos.

In particular, left-right asymmetry, the process through which cells “know” which side they are on as they form body organs such as the heart and liver, is controlled by serotonin transporters. Michael Levin, PhD., Associate Member of the Staff, conducted his research with substances commonly used to treat mood disorders in humans including the drug Prozac. These drugs address chemical imbalances in the brain by blocking serotonin’s removal from the space between neurons.


“With this research, we’ve not only identified a novel role of the serotonin transporters, in contributing to left-right asymmetry, but have also confirmed that serotonin has a role in cells other than neurons,” Levin said. “This raises interesting questions related to embryonic development and also about the possible subtle side-effects of serotonin-related drugs like the selective serotonin reuptake inhibitors (SSRI antidepressants such as Prozac and Zoloft) or the monoamine oxidase inhibitors (MAOIs).”

This study, published in the most recent issue of Developmental Neuroscience, has ramifications for neuroscience, developmental genetics, evolutionary biology and, possibly teratology (a branch of pathology and embryology concerned with abnormal development and congenital malformations).

In previous studies, Dr. Levin found that frog embryos contain a supply of serotonin provided in the egg by the mother. This maternal serotonin functions during the first few cell divisions and then is degraded by an enzyme, monoamine oxidase, which has many important functions in human neurobiology. Chick embryos, on the other hand, synthesize their own serotonin shortly after fertilization. Though details differ, both species utilize serotonin signaling as a patterning mechanism long before the appearance of the nervous system, suggesting that this novel role for serotonin signaling may be conserved in a number of different species.

While the previous study demonstrated the importance of serotonin receptors, which sense serotonin present outside cells, the latest work showed that the transport of serotonin into cells is also crucial. This highlights the importance of dynamic serotonin movement as part of cellular cross-talk, and also suggests that there are important functions for serotonin inside of cells about which we know very little. The future characterization of these internal serotonin targets represents an exciting and fruitful area for basic biology and drug development.

Michael Levin, Ph.D. is Associate Member of the Staff, is an Associate Member of the Staff in The Forsyth Institute Department of Cytokine Biology. Through experimental approaches and mathematical modeling, Dr. Levin and his team examine the processes governing large-scale pattern formation and biological information storage during embryonic development. The lab’s investigations are directed toward understanding the mechanisms of signaling between cells and tissues that allows a biological system to reliably generate and maintain a complex morphology. The Levin team studies these processes in the context of embryonic development and regeneration, with a particular focus on the biophysics of cell behavior.

The Forsyth Institute is an independent, nonprofit research organization focused on oral, craniofacial and related biomedical science.

Jennifer Kelly | EurekAlert!
Further information:
http://www.forsyth.org

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>