Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Transporters for the brain chemical serotonin provide

30.11.2005


Forsyth Study Also Provides Insight to Possible Complications from Serotonin Blocking Drugs



Researchers at The Forsyth Institute have discovered that the transport mechanisms for serotonin — the chemical substance involved in transmitting signals between neurons, and which has a role in anxiety and mood disorders — play a key role in determining where organs are positioned in the body during embryonic development. Transporters bring serotonin into cells. The research team, led by Dr. Michael Levin, found that when the transport of serotonin into cells was blocked, normal development was disrupted in frog and chick embryos.

In particular, left-right asymmetry, the process through which cells “know” which side they are on as they form body organs such as the heart and liver, is controlled by serotonin transporters. Michael Levin, PhD., Associate Member of the Staff, conducted his research with substances commonly used to treat mood disorders in humans including the drug Prozac. These drugs address chemical imbalances in the brain by blocking serotonin’s removal from the space between neurons.


“With this research, we’ve not only identified a novel role of the serotonin transporters, in contributing to left-right asymmetry, but have also confirmed that serotonin has a role in cells other than neurons,” Levin said. “This raises interesting questions related to embryonic development and also about the possible subtle side-effects of serotonin-related drugs like the selective serotonin reuptake inhibitors (SSRI antidepressants such as Prozac and Zoloft) or the monoamine oxidase inhibitors (MAOIs).”

This study, published in the most recent issue of Developmental Neuroscience, has ramifications for neuroscience, developmental genetics, evolutionary biology and, possibly teratology (a branch of pathology and embryology concerned with abnormal development and congenital malformations).

In previous studies, Dr. Levin found that frog embryos contain a supply of serotonin provided in the egg by the mother. This maternal serotonin functions during the first few cell divisions and then is degraded by an enzyme, monoamine oxidase, which has many important functions in human neurobiology. Chick embryos, on the other hand, synthesize their own serotonin shortly after fertilization. Though details differ, both species utilize serotonin signaling as a patterning mechanism long before the appearance of the nervous system, suggesting that this novel role for serotonin signaling may be conserved in a number of different species.

While the previous study demonstrated the importance of serotonin receptors, which sense serotonin present outside cells, the latest work showed that the transport of serotonin into cells is also crucial. This highlights the importance of dynamic serotonin movement as part of cellular cross-talk, and also suggests that there are important functions for serotonin inside of cells about which we know very little. The future characterization of these internal serotonin targets represents an exciting and fruitful area for basic biology and drug development.

Michael Levin, Ph.D. is Associate Member of the Staff, is an Associate Member of the Staff in The Forsyth Institute Department of Cytokine Biology. Through experimental approaches and mathematical modeling, Dr. Levin and his team examine the processes governing large-scale pattern formation and biological information storage during embryonic development. The lab’s investigations are directed toward understanding the mechanisms of signaling between cells and tissues that allows a biological system to reliably generate and maintain a complex morphology. The Levin team studies these processes in the context of embryonic development and regeneration, with a particular focus on the biophysics of cell behavior.

The Forsyth Institute is an independent, nonprofit research organization focused on oral, craniofacial and related biomedical science.

Jennifer Kelly | EurekAlert!
Further information:
http://www.forsyth.org

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>