Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Regenerating worms help elucidate stem cell biology

25.11.2005


Using a tiny flatworm best known for its extraordinary ability to regenerate lost tissue, researchers have identified a gene that controls the ability of stem cells to differentiate into specialized cells. The gene encodes a protein that is most similar to the protein PIWI, an important regulator of stem cells in organisms ranging from plants to humans.



The replacement of tissue lost to injury or shed during the body’s normal activities is essential for the survival of most organisms. The new study, published in the November 25, 2005, issue of the journal Science, helps scientists understand how stem cells make this process possible. The research, performed at the University of Utah School of Medicine, was carried out by Helen Hay Whitney postdoctoral fellow Peter W. Reddien (now an Associate Member at the Whitehead Institute for Biomedical Research), and led by Howard Hughes Medical Institute investigator Alejandro Sánchez Alvarado.

Salamanders, zebrafish, and other organisms are capable of regenerating entirely new body parts. Although the human body does not face such demands, it is constantly replacing lost cells. For example, blood replenishes itself, wounds heal, and the lining of the gut sloughs off and is restored. Nowhere, however, is the process of regeneration more dramatic than in the freshwater flatworm planaria. Cut one of these animals in half, and a week later, two fully functional worms will have developed from the pieces. Cut a piece that is 1/279th the size of the animal, and it too will regrow into a complete worm.


The process, scientists know, is dependent on stem cells in the adult planaria known as neoblasts. Like all stem cells, neoblasts have the capability to develop into a variety of different cell types, meaning they can transform themselves into whatever tissue is needed after injury, be it intestine, skin, or brain. Even in the absence of injury, these cells are critical to maintain a healthy worm, as they are also responsible for replacing tissue that has been lost naturally. Scientists are just beginning to explore the molecular mechanisms that control adult stem cells, so, said Sánchez Alvarado, it’s too soon to know how similar these mechanism are in planaria neoblasts and other organisms’ stem cells. "But at least at the gross morphological level and gross biological functions, they compare quite well," he said.

Destruction of a planarian’s neoblasts, which occurs when scientists expose the animal to radiation in the laboratory, is devastating. "The animal will survive on the virtue of its differentiated cells," Sánchez Alvarado said, "but as the tissues begin to turn over and there are no stem cells to replace such tissues, the animal begins, basically, to fall apart." It degenerates in a very specific way, he explained, with the tip of the head beginning to regress, followed by a curling up of the sides of the body. Not surprisingly, worms without neoblasts also lose their ability to regenerate.

With their unparalleled capacity for regeneration and the many environmental cues that influence the division and differentiation of their neoblasts, Sánchez Alvarado considers planaria an excellent model to tease out the intricacies of adult stem cell biology. "I think they probably have a lot to teach us about how a population of stem cells is being regulated in vivo, rather than in a Petri dish," he said. So Sánchez Alvarado and his colleagues set out to understand exactly how neoblasts carry out the remarkable maintenance and recreation of the varied tissues that make up a flatworm.

Earlier this year, they got their first clues when they individually turned off 1,065 of the worm’s genes, and found 240 that were involved in some aspect of regeneration. Importantly, Sánchez Alvarado noted, 85 percent of these genes are found in the genomes of other organisms, including humans. In the current study, the scientists zeroed in on one of these genes, called smedwi-2, that was active in dividing neoblasts.

Smedwi-2 belongs to the Argonaute/PIWI protein family and is most similar to PIWI proteins found in fruit flies. According to Sánchez Alvarado, PIWI proteins have been shown to play a role in regulating stem cells in plants and fruit flies, as well as humans. "This encompasses millions of years of evolution," he said. "Still, we don’t know exactly how this particular gene is doing its function in any of these organisms."

To find out, the scientists used a technique known as RNA interference to specifically turn off the piwi gene in planaria. When they did this, they found that worms had the same defects as those whose neoblasts have been destroyed by radiation -- head regression, curling, and the inability to regenerate -- suggesting that the gene was needed for normal neoblast function.

The researchers examined piwi’s role more closely, and found that when they amputated part of a worm where the gene had been turned off, the stem cells were still able to detect the wound. Amputation triggered the stem cells to divide, as in normal worms, and the daughter cells traveled proficiently to the part of the body where they were needed. However, once they arrived, they failed to replace the lost tissue.

When neoblasts divide, they produce at least two cell types – one copy of the original, and one cell that can develop into a specialized cell to replace a lost cell elsewhere in the body. The researchers found that without piwi, the daughter cells from this division failed to differentiate into a specialized cell once they’d reached their destination. Based on their findings, Sánchez Alvarado said, "We think that piwi is actually involved in producing daughter cells that are competent to restore aged differentiated cells during homeostasis as well as missing tissues after amputation. Unlike what’s been thought about piwi for some time, which is that it was required to maintain the stem cell, we think that’s not happening here. The stem cells are being maintained by another mechanism, and it’s the division progeny, instead, that is being affected."

There’s some evidence, Sánchez Alvarado said, that piwi plays a similar role in regulating the progeny of adult stem cells in humans. He cautioned that more work is needed to determine just how functionally similar the factors regulating stem cells in planaria are to those in higher organisms. But so far there’s good evidence that many of the important genes are the same, he said. And the current study begins the detailed analysis that will be needed to establish whether this humble worm can illuminate the mechanisms underlying the unique biology of stem cells.

Jennifer Michalowski | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>