Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decrease Cancer-Suppressing Protein Activity, Increase Life Span

22.11.2005


Fruit flies can live significantly longer, and remain healthy, when activity of the fly version of the tumor-suppressing protein p53 is reduced in nerve cells. Published in Current Biology, the results shed important new light on the role this "protector of the genome" plays in aging and point to p53 as a viable target for anti-aging drugs.



The p53 gene plays a critical role in the body. It protects human cells by producing a protein that triggers apoptosis, or cell suicide, when DNA is badly damaged. This prevents the spread of genetic mutations and the formation of cancer. When the p53 gene is damaged or missing, cancer may result. In fact, more than 50 percent of human cancers carry p53 mutations.

There is, however, a flip side to this guardian gene. When p53 is hyperactive - pumping out higher-than-normal levels of tumor-suppressing protein - it accelerates aging and shortens life span in mice.


"What this new work shows is that there is a ’golden mean’ with p53," said Stephen Helfand, a Brown University biologist who served as senior scientist for the study. "By targeting a decrease in p53 protein, specifically in neurons, we can extend healthy life span in fruit flies. This is an important conceptual shift. Decreasing the activity of p53 can have positive effects on aging."

Helfand, now a professor in Brown’s Department of Molecular Biology, Cell Biology and Bio-chemistry, oversaw the project while at the University of Connecticut Health Center. To test speculation that tinkering with p53 could produce life-extending results, Helfand and colleagues designed an experiment using fruit flies - which share thousands of genes with humans and also express a version of the p53 gene.

The team engineered a line of flies that carried a mutant version of p53. When flies had the altered gene switched on, they produced a mutant form of the p53 protein that deactivated normal p53 protein. But the affect was targeted to occur only in neurons. Why single out neurons? Because adult nerve cells don’t divide - making them much less prone to cancer.

Results showed that adult mutant flies lived up to 58 percent longer - an average of 60 days, up from the average of 38 days. At the same time, the flies appeared healthy, continuing to feed, move and reproduce normally.

The experiment does not explain why targeted, decreased p53 activity extends healthy life span. But it suggests a mechanism - caloric restriction, a biochemical cascade proven to slow aging. To test the hypothesis, the specially engineered flies were fed a calorie-diluted diet. But the flies didn’t live any longer, suggesting that this pathway was, indeed, already in play.

"We believe that p53 is part of the caloric restriction life span extension pathway," Helfand said. "It’s not the entire explanation, but it appears to play a major role."

The research team includes Brown post-doctorate research fellow Johannes Bauer and graduate student Peter Poon, as well as Heather Glatt-Deeley, a research assistant at the University of Connecticut. John Abrams, an associate professor at the University of Texas Southwestern Medical Center, also contributed.

The National Institute on Aging, The Donaghue Foundation, the American Federation for Aging Research, The Glenn Foundation for Medical Research, and the Ellison Medical Foundation funded the work.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>