Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decrease Cancer-Suppressing Protein Activity, Increase Life Span

22.11.2005


Fruit flies can live significantly longer, and remain healthy, when activity of the fly version of the tumor-suppressing protein p53 is reduced in nerve cells. Published in Current Biology, the results shed important new light on the role this "protector of the genome" plays in aging and point to p53 as a viable target for anti-aging drugs.



The p53 gene plays a critical role in the body. It protects human cells by producing a protein that triggers apoptosis, or cell suicide, when DNA is badly damaged. This prevents the spread of genetic mutations and the formation of cancer. When the p53 gene is damaged or missing, cancer may result. In fact, more than 50 percent of human cancers carry p53 mutations.

There is, however, a flip side to this guardian gene. When p53 is hyperactive - pumping out higher-than-normal levels of tumor-suppressing protein - it accelerates aging and shortens life span in mice.


"What this new work shows is that there is a ’golden mean’ with p53," said Stephen Helfand, a Brown University biologist who served as senior scientist for the study. "By targeting a decrease in p53 protein, specifically in neurons, we can extend healthy life span in fruit flies. This is an important conceptual shift. Decreasing the activity of p53 can have positive effects on aging."

Helfand, now a professor in Brown’s Department of Molecular Biology, Cell Biology and Bio-chemistry, oversaw the project while at the University of Connecticut Health Center. To test speculation that tinkering with p53 could produce life-extending results, Helfand and colleagues designed an experiment using fruit flies - which share thousands of genes with humans and also express a version of the p53 gene.

The team engineered a line of flies that carried a mutant version of p53. When flies had the altered gene switched on, they produced a mutant form of the p53 protein that deactivated normal p53 protein. But the affect was targeted to occur only in neurons. Why single out neurons? Because adult nerve cells don’t divide - making them much less prone to cancer.

Results showed that adult mutant flies lived up to 58 percent longer - an average of 60 days, up from the average of 38 days. At the same time, the flies appeared healthy, continuing to feed, move and reproduce normally.

The experiment does not explain why targeted, decreased p53 activity extends healthy life span. But it suggests a mechanism - caloric restriction, a biochemical cascade proven to slow aging. To test the hypothesis, the specially engineered flies were fed a calorie-diluted diet. But the flies didn’t live any longer, suggesting that this pathway was, indeed, already in play.

"We believe that p53 is part of the caloric restriction life span extension pathway," Helfand said. "It’s not the entire explanation, but it appears to play a major role."

The research team includes Brown post-doctorate research fellow Johannes Bauer and graduate student Peter Poon, as well as Heather Glatt-Deeley, a research assistant at the University of Connecticut. John Abrams, an associate professor at the University of Texas Southwestern Medical Center, also contributed.

The National Institute on Aging, The Donaghue Foundation, the American Federation for Aging Research, The Glenn Foundation for Medical Research, and the Ellison Medical Foundation funded the work.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>