Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Changes to embryos can elicit change in adult fish

10.11.2005


Researchers uncover genetic foundation of fish jaws

In a study illustrating the apparent linkages between the evolutionary development and embryonic development of species, researchers have uncovered the genetic elements that determine the structure and function of a simple biomechanical system, the lower jaw of the cichlid fish. In addition, they’ve shown that increasing expression of a particular gene in an embryo can lead to physical changes in the adult fish. The results appear in the November 11, 2005 issue of the Proceedings of the National Academy of Sciences.

"We’re using the jaw to think about the genetic basis of biomechanical systems," said J. Todd Streelman, assistant professor in the School of Biology at the Georgia Institute of Technology. "We want to understand the genes that control this lever system. What we found was that this simple biomechanical system is much more complex than previously thought."



Streelman, along with colleagues from the Forsyth Institute at the Harvard School of Dental Medicine and the Hubbard Center for Genome Studies at the University of New Hampshire, predicted that components of the jaw that were functionally or developmentally related would be controlled by the same set of genes, or genetically integrated.

"We were surprised to see that the genetic basis of components involved in opening the jaw is independent of the jaw-closing system," said Streelman.

Researchers compared two cichlid species that dwell in Africa’s Lake Malawi. One species had force modified jaws that are more adept at biting prey; the other had speed modified jaws, which are more accomplished at using suction to feed on plankton. Each jaw system is essentially a lever system made up of one out-lever and two in-levers.

"We found that as the closing in-lever gets longer, the out-lever gets shorter and vice-versa," explained Streelman.

"When the in-lever is long, this gives the jaw a high mechanical advantage and the jaw can produce more force for biting. When the out-lever is long, that results in a lower mechanical advantage and a better design for suction-feeding. This negative correlation is produced by genetic integration."

But, when the team mapped the regions of the genome controlling the jaw-opening system, they found that these levers are controlled by different chromosomes.

In another part of the study, researchers showed that the gene bmp4 is a major factor in controlling the jaw-closing system. When the team injected bmp4 protein into the developing embryos of another fish species, the zebrafish, they saw that the mechanical advantage (and thus the biting power) of the jaw increased.

"This experiment fuses the traditional disciplines of developmental genetics and evolutionary biology," said Streelman. "We’ve demonstrated that important functional differences operating in adult organisms are elicited by changes in early development. Our next goal is to understand the genetic bases underlying the differences between the simple biomechanical system of the lower jaw and complex systems of the anterior jaw in these fish."

David Terraso | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>