Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A commonly prescribed drug reverses learning and attention deficits in a mouse model of the genetic disorder Neurofibromatosis


This week, researchers report evidence that a statin drug already shown to be safe for use in humans has proven effective at correcting cell-cell communication and curing learning disfunction in a mouse model of Neurofibromatosis type I, a human genetic disorder that causes learning disabilities in millions of people worldwide.

Learning disabilities affect 5% of the world’s population, have a profound impact on countless lives, and cost billions of dollars, but there is little or nothing that we are currently able do to prevent or treat this enormous problem. At the heart of this challenge is our lack of understanding of the mechanisms underlying this complex class of brain problems. In an effort to understand these disorders and develop treatments, Dr. Alcino Silva and colleagues at UCLA have focused research on the study of the most common genetic cause for learning disabilities: Neurofibromatosis type I (NF1). The idea behind the NF1 research is that if we understand this particular learning disability, which is caused by a single defective gene, and manage to develop effective and sustainable treatments, we may be able to use the information learned to tackle this general class of learning and memory problems.

Because of the difficulties and limitations of studying mechanisms of memory in human patients, the researchers decided to study NF1 in mice. The scientists had previously shown that mice with the mutations that cause NF1 in human patients possess many of the features of this complex disorder, including deficits in spatial learning, attention, and motor coordination. Studies of these mutant mice showed that the learning deficits are caused by the overactivity of a molecule called Ras, causing an imbalance between signals that activate brain cells and those that inhibit them, and leading to deficits in cell-cell communication needed for learning.

The work reported by Silva and colleagues this week in Current Biology demonstrates that a commonly prescribed statin drug, Lovastatin, can reverse the overactivity of Ras, decrease inhibition, repair the cell-cell communication deficits, and cure the learning disabilities of the adult Nf1 mutant mice. These findings are tremendously exciting because they suggest that the disabling learning deficits associated with NF1, a disorder that affects one in three thousand people world-wide, could be cured with a class of relatively safe drugs (statins) that millions of people have taken for extended periods of time in the last 20 years. Importantly, the findings also demonstrate that contrary to popular belief, the cognitive deficits associated with this disorder are not irreversible developmental deficits, since a limited treatment in adult mice can effectively reverse this condition. Because the mechanisms of NF1 function are similar in mice and men, these findings suggest that statins will be an effective strategy to treat NF1 in humans.

Heidi Hardman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>