Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zebrafish and CHIP help untangle protein misfolding in brain disease

01.11.2005


Keeping the body and mind healthy depends on keeping cells healthy and functioning. This means that cells need a very robust quality-control system to repair or remove damaged or misshapen proteins. Protein handling is especially important in neurons because damage or death of brain cells causes neurological disease.



Researchers in the University of Iowa Roy J. and Lucille A. Carver College of Medicine have identified a protein, called CHIP (C-terminal heat shock protein 70-interacting protein), that links two arms of the quality-control machinery: refolding of misshapen proteins and destruction of proteins that are damaged beyond repair.

"For all kinds of neurodegenerative disease, from Alzheimer’s disease to Huntington’s disease -- which was the focus of our study -- there are problems with protein folding and protein handling," said Henry Paulson, M.D., Ph.D., UI associate professor of neurology and senior author of the study. "The protein CHIP is a key player in that process. Understanding and manipulating this pathway could lead to therapies for these diseases."


Huntington’s disease is a devastating, inherited, neurodegenerative disease that is progressive and always fatal. The disease-causing gene produces a protein that is toxic to certain brain cells, and the subsequent neuronal damage leads to movement disorders, psychiatric disturbances and cognitive decline. The mutated protein contains an abnormally long stretch of a repeated amino acid and is prone to misfold and clump together, forming aggregates.

Working with several models of Huntington’s disease (HD), Paulson and his colleagues found that CHIP could suppress the disease. The study, published in the Oct. 5 issue of the Journal of Neuroscience, demonstrated that CHIP decreased aggregation of the mutant protein and cell death in mouse neurons and in zebrafish. The UI team also found that in mice with only one copy of the CHIP gene, genetically engineered HD progressed more quickly and the mice died earlier than in mice with two copies of the CHIP gene and normal levels of CHIP. These findings indicate that protein quality control is disrupted in HD and also suggest that boosting CHIP ’s action may be a route to potential therapies.

Paulson noted that in addition to showing that CHIP may be a good therapeutic target for neurodegenerative diseases, the study also demonstrates that zebrafish can be a powerful model for human neurodegenerative disease.

Zebrafish, a common tropical fish, have several attributes that make them attractive as lab animals. Unlike mammals, the fish embryos develop very rapidly outside of the mother and the early embryos are transparent allowing researchers to see internal development in the living creatures. Also, zebrafish are easy to manipulate genetically.

"For something that looks so unlike a human being, zebrafish share many genetic similarities including in the brain," Paulson said. "Zebrafish can be a very powerful animal model to study how genes influence and cause disease, including neurodegenerative disorders."

In addition to Paulson, the UI team included Victor Miller, a graduate student and lead author of the study, Rick Nelson, Cynthia Gouvion, Aislinn Williams, Edgardo Rodriguez-Lebron, Ph.D., Scott Harper, Ph.D., Beverly Davidson, Ph.D., the Roy J. Carver Chair in Internal Medicine and UI professor of internal medicine, physiology and biophysics, and neurology, and Michael Rebagliati, Ph.D., UI assistant professor of anatomy and cell biology.

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu
http://www.uihealthcare.com

More articles from Life Sciences:

nachricht Nesting aids make agricultural fields attractive for bees
20.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht The Kitchen Sponge – Breeding Ground for Germs
20.07.2017 | Hochschule Furtwangen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>