Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zebrafish and CHIP help untangle protein misfolding in brain disease

01.11.2005


Keeping the body and mind healthy depends on keeping cells healthy and functioning. This means that cells need a very robust quality-control system to repair or remove damaged or misshapen proteins. Protein handling is especially important in neurons because damage or death of brain cells causes neurological disease.



Researchers in the University of Iowa Roy J. and Lucille A. Carver College of Medicine have identified a protein, called CHIP (C-terminal heat shock protein 70-interacting protein), that links two arms of the quality-control machinery: refolding of misshapen proteins and destruction of proteins that are damaged beyond repair.

"For all kinds of neurodegenerative disease, from Alzheimer’s disease to Huntington’s disease -- which was the focus of our study -- there are problems with protein folding and protein handling," said Henry Paulson, M.D., Ph.D., UI associate professor of neurology and senior author of the study. "The protein CHIP is a key player in that process. Understanding and manipulating this pathway could lead to therapies for these diseases."


Huntington’s disease is a devastating, inherited, neurodegenerative disease that is progressive and always fatal. The disease-causing gene produces a protein that is toxic to certain brain cells, and the subsequent neuronal damage leads to movement disorders, psychiatric disturbances and cognitive decline. The mutated protein contains an abnormally long stretch of a repeated amino acid and is prone to misfold and clump together, forming aggregates.

Working with several models of Huntington’s disease (HD), Paulson and his colleagues found that CHIP could suppress the disease. The study, published in the Oct. 5 issue of the Journal of Neuroscience, demonstrated that CHIP decreased aggregation of the mutant protein and cell death in mouse neurons and in zebrafish. The UI team also found that in mice with only one copy of the CHIP gene, genetically engineered HD progressed more quickly and the mice died earlier than in mice with two copies of the CHIP gene and normal levels of CHIP. These findings indicate that protein quality control is disrupted in HD and also suggest that boosting CHIP ’s action may be a route to potential therapies.

Paulson noted that in addition to showing that CHIP may be a good therapeutic target for neurodegenerative diseases, the study also demonstrates that zebrafish can be a powerful model for human neurodegenerative disease.

Zebrafish, a common tropical fish, have several attributes that make them attractive as lab animals. Unlike mammals, the fish embryos develop very rapidly outside of the mother and the early embryos are transparent allowing researchers to see internal development in the living creatures. Also, zebrafish are easy to manipulate genetically.

"For something that looks so unlike a human being, zebrafish share many genetic similarities including in the brain," Paulson said. "Zebrafish can be a very powerful animal model to study how genes influence and cause disease, including neurodegenerative disorders."

In addition to Paulson, the UI team included Victor Miller, a graduate student and lead author of the study, Rick Nelson, Cynthia Gouvion, Aislinn Williams, Edgardo Rodriguez-Lebron, Ph.D., Scott Harper, Ph.D., Beverly Davidson, Ph.D., the Roy J. Carver Chair in Internal Medicine and UI professor of internal medicine, physiology and biophysics, and neurology, and Michael Rebagliati, Ph.D., UI assistant professor of anatomy and cell biology.

Jennifer Brown | EurekAlert!
Further information:
http://www.uiowa.edu
http://www.uihealthcare.com

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>