Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lineage trees for cells

28.10.2005


Weizmann Institute scientists develop new analytical method

Some fundamental outstanding questions in science – "Where do stem cells originate?" "How does cancer develop?" "When do cell types split off from each other in the embryo?" – might be answered if scientists had a way to map the history of the body’s cells going back to the fertilized egg. Now, a multidisciplinary team at the Weizmann Institute of Science has developed an analytical method that can trace the lineage trees of cells.

This accomplishment started with a challenge to common wisdom, which says that every cell in an organism carries an exact duplicate of its genome. Although mistakes in copying, which are passed on to the next generation of cells as mutations, occur when cells divide, such tiny flaws in the genome are thought to be trivial and mainly irrelevant. But research students Dan Frumkin and Adam Wasserstrom of the Institute’s Biological Chemistry Department, working under the guidance of Prof. Ehud Shapiro of the Biological Chemistry and Computer Science and Applied Mathematics Departments, raised a new possibility: though biologically insignificant, the accumulated mutations might hold a record of the history of cell divisions. These findings were published today in PLoS Computational Biology.



Together with Prof. Uriel Feige of the Computer Science and Applied Mathematics Department and research student Shai Kaplan, they proved that these mutations can be treated as information and used to trace lineage on a large scale, and then applied the theory to extracting data and drafting lineage trees for living cells.

Methods employed until now for charting cell lineage have relied on direct observation of developing embryos. This method worked well enough for the tiny, transparent worm, C. elegans, which has a total of about 1,000 cells, but for humans, with 100 trillion cells, or even newborn mice or human embryos at one month, each of which has one billion cells after some 40 rounds of cell division, the task would be impossible.

The study focused on mutations in specific mutation-prone areas of the genome known as microsatellites. In microsatellites, a genetic "phrase" consisting of a few nucleotides (genetic "letters") is repeated over and over; mutations manifest themselves as additions or subtractions in length. Based on the current understanding of the mutation process in these segments, the scientists proved mathematically that microsatellites alone contain enough information to accurately plot the lineage tree for a one-billion-cell organism.

Both human and mouse genomes contain around 1.5 million microsatellites, but the team’s findings demonstrated that a useful analysis can be performed based on a much smaller number. To obtain a consistent mutation record, the team used organisms with a rare genetic defect found in plants and animals alike. While healthy cells have repair mechanisms to correct copying mistakes and prevent mutation, cells with the defect lack this ability, allowing mutations to accumulate relatively rapidly.

Borrowing a computer algorithm used by evolutionary biologists that analyzes genetic information in order to place organisms on branches of the evolutionary tree, the researchers assembled an automated system that samples the genetic material from a number of cells, compares it for specific mutations, applies the algorithm to assess degrees of relatedness, and then outlines the cell lineage tree. To check their system, they pitted it against the tried-and-true method of observing cell divisions as they occurred in a lab-grown cell culture. The team found that, from an analysis of just 50 microsatellites, they could successfully recreate an accurate cell lineage tree.

While the research team plans to continue to test their system on more complex organisms such as mice, several scientists have already expressed interest in integrating the method into ongoing research in their fields. Says Prof. Shapiro, who heads the project: "Our discovery may point the way to a future ’Human Cell Lineage Project’ that would aim to resolve fundamental open questions in biology and medicine by reconstructing ever larger portions of the human cell lineage tree."

Elizabeth McCrocklin | EurekAlert!
Further information:
http://www.weizmann.ac.il/udi/plos2005

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>