Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trained wasps may be used to detect bombs, bugs, bodies and more

21.10.2005


An unusual device that uses trained wasps, rather than trained dogs, to detect specific chemical odors could one day be used to find hidden explosives, plant diseases, illegal drugs, cancer and even buried bodies, according to a joint study by researchers at the University of Georgia and U.S. Department of Agriculture.



The trained wasps are contained in a cup-sized device, called a "Wasp Hound," that is capable of sounding an alarm or triggering a visual signal, such as a flashing light, when the insects encounter a target odor. The sensor is cheaper to use than trained dogs and more sensitive than some sophisticated chemical detection methods, including electronic noses, the researchers say. Their experimental device is described in a study slated to be published in the Jan.-Feb. issue of Biotechnology Progress, a joint publication of the American Chemical Society and the American Institute of Chemical Engineers.

The idea of using unconventional biological sensors to detect target odors is not new, according to study leaders Glen C. Rains, Ph.D., a biological engineer with the University of Georgia in Tifton, Ga., and W. Joe Lewis, Ph.D., a research entomologist with the USDA’s Agricultural Research Service, also in Tifton. Rats, honeybees, fish and even yeasts have all been used experimentally to detect various explosives or toxins, they say.


"We’ve now developed a prototype device that puts the idea of using chemical-sensing wasps into a practical framework and its possibilities are astounding," says Rains, who believes that the device could be ready for commercialization in five to ten years. Like batteries in a smoke detector, the trained wasps won’t live forever and will eventually have to be replaced, he says.

In the current study, the researchers used Microplitis croceipes, a species of tiny parasitic wasps that can be trained to detect certain odors by associating the odors with a food reward. The wasps are not capable of stinging humans, the scientists say. Training a single wasp to detect a target odor can take as little as five minutes and the insects can be easily bred by the thousands, they say.

The research team developed a special ventilated device, composed of PVC pipe, which holds a small cartridge containing five trained wasps. The wasps were trained to detect 3-octanone, a chemical produced by certain toxic fungi that infect corn and peanut crops. The presence of the fungi can result in costly crop losses.

The Wasp Hound contains a tiny camera that is linked to a computer to record the movement of the wasps. In a controlled test, the device was exposed to batches of dried feed corn containing either the target chemical, myrcene (a compound of neutral interest to the wasps) or corn alone. In comparison to a group of untrained wasps, the trained wasps showed significantly stronger behavioral responses to the target odor than to the myrcene and control treatments. Responses include moving toward the target odor source and congregating around the device’s odor inlet. This movement can be translated into an alarm signal to indicate the presence of a toxic plant fungus, the scientists say.

Besides detecting plant diseases, the device has a wide variety of other potential applications. In previous studies, the researchers demonstrated that they also could train the wasps to detect 2,4-dinitrotoluene (2,4-DNT), a chemical used in certain explosives. The wasps can also be used to detect chemical odors that are associated with certain human diseases, including lung cancer, skin cancer and stomach ulcers, they say. More recently, their group has been looking into the possibility of using the wasps to detect odors associated with hidden bodies, from murder victims to victims of disasters.

The other collaborator in this study was student Samuel L. Utley, M.S., currently a research engineer with the University of Georgia. The study was funded by the university and by the USDA. The researchers have filed a patent application for the Wasp Hound.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>